Linear and branched poly(ethylenimines), lPEI and bPEI, respectively, grafted with beta-cyclodextrin are prepared to give CD-lPEI and CD-bPEI, respectively, and are investigated as in vitro and in vivo nonviral gene delivery agents. The in vitro toxicity and transfection efficiency are sensitive to the level of cyclodextrin grafting. The cyclodextrin-containing polycations, when combined with adamantane-poly(ethylene glycol) (AD-PEG) conjugates, form particles that are stable at physiological salt concentrations. PEGylated CD-lPEI-based particles give in vitro gene expression equal to or greater than lPEI as measured by the percentage of EGFP expressing cells. Tail vein injections into mice of 120 microg of plasmid DNA formulated with CD-lPEI and AD-PEG do not reveal observable toxicities, and both nucleic acid accumulation and expression are observed in liver.
High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation.
The comprehensive structure-activity relationships of triantennary GalNAc conjugated ASOs for enhancing potency via ASGR mediated delivery to hepatocytes is reported. Seventeen GalNAc clusters were assembled from six distinct scaffolds and attached to ASOs. The resulting ASO conjugates were evaluated in ASGR binding assays, in primary hepatocytes, and in mice. Five structurally distinct GalNAc clusters were chosen for more extensive evaluation using ASOs targeting SRB-1, A1AT, FXI, TTR, and ApoC III mRNAs. GalNAc-ASO conjugates exhibited excellent potencies (ED50 0.5-2 mg/kg) for reducing the targeted mRNAs and proteins. This work culminated in the identification of a simplified tris-based GalNAc cluster (THA-GN3), which can be efficiently assembled using readily available starting materials and conjugated to ASOs using a solution phase conjugation strategy. GalNAc-ASO conjugates thus represent a viable approach for enhancing potency of ASO drugs in the clinic without adding significant complexity or cost to existing protocols for manufacturing oligonucleotide drugs.
Aims Amyloidogenic transthyretin (ATTR) amyloidosis is a fatal disease characterized by progressive cardiomyopathy and/or polyneuropathy. AKCEA-TTR-L Rx (ION-682884) is a ligand-conjugated antisense drug designed for receptor-mediated uptake by hepatocytes, the primary source of circulating transthyretin (TTR). Enhanced delivery of the antisense pharmacophore is expected to increase drug potency and support lower, less frequent dosing in treatment. Methods and results AKCEA-TTR-L Rx demonstrated an approximate 50-fold and 30-fold increase in potency compared with the unconjugated antisense drug, inotersen, in human hepatocyte cell culture and mice expressing a mutated human genomic TTR sequence, respectively. This increase in potency was supported by a preferential distribution of AKCEA-TTR-L Rx to liver hepatocytes in the transgenic hTTR mouse model. A randomized, placebo-controlled, phase 1 study was conducted to evaluate AKCEA-TTR-L Rx in healthy volunteers (ClinicalTrials.gov: NCT03728634). Eligible participants were assigned to one of three multiple-dose cohorts (45, 60, and 90 mg) or a single-dose cohort (120 mg), and then randomized 10:2 (active : placebo) to receive a total of 4 SC doses (Day 1, 29, 57, and 85) in the multiple-dose cohorts or 1 SC dose in the single-dose cohort. The primary endpoint was safety and tolerability; pharmacokinetics and pharmacodynamics were secondary endpoints. All randomized participants completed treatment. No serious adverse events were reported. In the multiple-dose cohorts, AKCEA-TTR-L Rx reduced TTR levels from baseline to 2 weeks after the last dose of 45, 60, or 90 mg by a mean (SD) of À85.7% (8.0), À90.5% (7.4), and À93.8% (3.4), compared with À5.9% (14.0) for pooled placebo (P < 0.001). A maximum mean (SD) reduction in TTR levels of À86.3% (6.5) from baseline was achieved after a single dose of 120 mg AKCEA-TTR-L Rx. Conclusions These findings suggest an improved safety and tolerability profile with the increase in potency achieved by productive receptor-mediated uptake of AKCEA-TTR-L Rx by hepatocytes and supports further development of AKCEA-TTR-L Rx for the treatment of ATTR polyneuropathy and cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.