Tuberculosis (TB) is the leading cause of infectious death worldwide. Development of improved TB vaccines that boost or replace BCG is a major global health goal. ID93 + GLA-SE is a fusion protein TB vaccine candidate combined with the Toll-like Receptor 4 agonist adjuvant, GLA-SE. We conducted a phase 1, randomized, double-blind, dose-escalation clinical trial to evaluate two dose levels of the ID93 antigen, administered intramuscularly alone or in combination with two dose levels of the GLA-SE adjuvant, in 60 BCG-naive, QuantiFERON-negative, healthy adults in the US (ClinicalTrials.gov identifier: NCT01599897). When administered as 3 injections, 28 days apart, all dose levels of ID93 alone and ID93 + GLA-SE demonstrated an acceptable safety profile. All regimens elicited vaccine-specific humoral and cellular responses. Compared with ID93 alone, vaccination with ID93 + GLA-SE elicited higher titers of ID93-specific antibodies, a preferential increase in IgG1 and IgG3 subclasses, and a multifaceted Fc-mediated effector function response. The addition of GLA-SE also enhanced the magnitude and polyfunctional cytokine profile of CD4+ T cells. The data demonstrate an acceptable safety profile and indicate that the GLA-SE adjuvant drives a functional humoral and T-helper 1 type cellular response.
SUMMARY There are a limited number of adjuvants that elicit effective cell-based immunity required for protection against intracellular bacterial pathogens. Here, we report that STING-activating cyclic dinucleotides (CDNs) formulated in a protein subunit vaccine elicit long-lasting protective immunity to Mycobacterium tuberculosis in the mouse model. Subcutaneous administration of this vaccine provides equivalent protection to that of the live attenuated vaccine strain Bacille Calmette-Guérin (BCG). Protection is STING dependent but type I IFN independent and correlates with an increased frequency of a recently described subset of CXCR3-expressing T cells that localize to the lung parenchyma. Intranasal delivery results in superior protection compared with BCG, significantly boosts BCG-based immunity, and elicits both Th1 and Th17 immune responses, the latter of which correlates with enhanced protection. Thus, a CDN-adjuvanted protein subunit vaccine has the capability of eliciting a multi-faceted immune response that results in protection from infection by an intracellular pathogen.
Background Tuberculosis is the leading single-pathogen cause of death worldwide, and China has the third largest number of cases worldwide. New tools, such as new vaccines, are needed to meet WHO tuberculosis goals. Tuberculosis vaccine development strategies mostly target infants or adolescents, but given China's ageing epidemic, vaccinating older people might be important. We modelled the potential impact of new tuberculosis vaccines in China targeting adolescents (15-19 years) or older adults (60-64 years) with varying vaccine characteristics to inform strategic vaccine development. Methods A Mycobacterium tuberculosis transmission model was calibrated to age-stratified demographic and epidemiological data from China. Varying scenarios of vaccine implementation (age targeting [adolescents or older adults] and coverage [30% or 70%]) and characteristics (efficacy [40%, 60%, or 80%], duration of protection [10 years or 20 years], and host infection status required for efficacy [pre-infection, post-infection in latency, post-infection in latency or recovered, or pre-infection and post-infection]) were assessed. Primary outcomes were tuberculosis incidence and mortality rate reduction in 2050 in each vaccine scenario compared with the baseline (no new vaccine) scenario and cumulative number needed to vaccinate (NNV) per case or death averted, 2025-50. Findings By 2050, results suggest that 74•5% (uncertainty interval [UI] 70•2-78•6) of incident tuberculosis cases in China would occur in people aged 65 years or older, and 75•1% (66•8-80•7) of all cases would be due to reactivation, rather than new infection. All vaccine profiles delivered to older adults had higher population-level impact (reduction of incidence and mortality rates) and lower NNV per case and per death averted than if delivered to adolescents. For an intermediate vaccine scenario of 60% efficacy, 10-year protection, and 70% coverage, the reduction of tuberculosis incidence rates with older adult vaccination was 1•9 times (UI 1•5-2•6) to 157•5 times (119•3-225•6) greater than with adolescent vaccination, and the NNV was 0•011 times (0•008-0•014) to 0•796 times (0•632-0•970) lower. Furthermore, with older adult vaccination, post-infection vaccines provided substantially greater mortality and incidence rate reductions than pre-infection vaccines. Interpretation Adolescent-targeted tuberculosis vaccines, the focus of many development plans, would have only a small impact in ageing, reactivation-driven epidemics such as those in China. Instead, an efficacious post-infection vaccine delivered to older adults will be crucial to maximise population-level impact in this setting and would provide an important contribution towards achieving WHO goals. Older adults should be included in tuberculosis vaccine clinical development and implementation planning. Funding Aeras and UK MRC.
Background The COVID-19 pandemic profoundly affected food systems including food security. Understanding how the COVID-19 pandemic impacted food security is important to provide support, and identify long-term impacts and needs. Objective The National Food Access and COVID research Team (NFACT) was formed to assess food security over different U.S. study sites throughout the pandemic, using common instruments and measurements. This study present results from 18 study sites across 15 states and nationally over the first year of the COVID-19 pandemic. Methods A validated survey instrument was developed and implemented in whole or part through an online survey of adults across the sites throughout the first year of the pandemic, representing 22 separate surveys. Sampling methods for each study site were convenience, representative, or high-risk targeted. Food security was measured using the USDA six-item module. Food security prevalence was analyzed using analysis of variance by sampling method to statistically significant differences. Results Respondents (n = 27,168) indicate higher prevalence of food insecurity (low or very low food security) since the COVID-19 pandemic, as compared to before the pandemic. In nearly all study sites, there is higher prevalence of food insecurity among Black, Indigenous, and People of Color (BIPOC), households with children, and those with job disruptions. The findings demonstrate lingering food insecurity, with high prevalence over time in sites with repeat cross-sectional surveys. There are no statistically significant differences between convenience and representative surveys, but statistically higher prevalence of food insecurity among high-risk compared to convenience surveys. Conclusions This comprehensive study demonstrates higher prevalence of food insecurity in the first year of the COVID-19 pandemic. These impacts were prevalent for certain demographic groups, and most pronounced for surveys targeting high-risk populations. Results especially document the continued high levels of food insecurity, as well as the variability in estimates due to survey implementation method. Summary Multi-site assessment demonstrates widespread food insecurity during COVID-19, especially on households with children, job loss, and Black, Indigenous, People of Color across multiple survey methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.