We report a measurement of the energy spectrum of cosmic rays for energies above 2.5 × 10 18 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5 × 10 19 eV. The principal conclusions are (1) The flattening of the spectrum near 5 × 10 18 eV, the so-called "ankle," is confirmed. (2) The steepening of the spectrum at around 5 × 10 19 eV is confirmed. (3) A new feature has been identified in the spectrum: in the region above the ankle the spectral index γ of the particle flux (∝ E −γ) changes from 2.51 AE 0.03 ðstatÞ AE 0.05 ðsystÞ to 3.05 AE 0.05 ðstatÞ AE 0.10 ðsystÞ before changing sharply to 5.1 AE 0.3 ðstatÞ AE 0.1 ðsystÞ above 5 × 10 19 eV. (4) No evidence for any dependence of the spectrum on declination has been found other than a mild excess from the Southern Hemisphere that is consistent with the anisotropy observed above 8 × 10 18 eV.
We report a measurement of the energy spectrum of cosmic rays above 2.5 × 10 18 eV based on 215 030 events. New results are presented: at about 1.3 × 10 19 eV, the spectral index changes from Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays.
A promising energy range to look for angular correlations between cosmic rays of extragalactic origin and their sources is at the highest energies, above a few tens of EeV (1 EeV ≡ 1018 eV). Despite the flux of these particles being extremely low, the area of ∼3000 km2 covered at the Pierre Auger Observatory, and the 17 yr data-taking period of the Phase
1 of its operations, have enabled us to measure the arrival directions of more than 2600 ultra-high-energy cosmic rays above 32 EeV. We publish this data set, the largest available at such energies from an integrated exposure of 122,000 km2 sr yr, and search it for anisotropies over the 3.4π steradians covered with the Observatory. Evidence for a deviation in excess of isotropy at intermediate angular scales, with ∼15° Gaussian spread or ∼25° top-hat radius, is obtained at the 4σ significance level for cosmic-ray energies above ∼40 EeV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.