Magnetite (Fe 3 O 4 ) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (>320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-containing bisphosphonate anchoring group. The PEGylated particles were characterized by a range of physicochemical methods, including dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and magnetization measurements. As the particle size increased from 10 to 31 nm, the amount of PEG coating decreased from 28.5 to 9 wt.%. The PEG formed a dense brush-like shell on the particle surface, which prevented particles from aggregating in water and PBS (pH 7.4) and maximized the circulation time in vivo . Magnetic resonance relaxometry confirmed that the PEG-modified Fe 3 O 4 nanoparticles had high relaxivity, which increased with increasing particle size. In the in vivo experiments in a mouse model, the particles provided visible contrast enhancement in the magnetic resonance images. Almost 70% of administrated 20-nm magnetic nanoparticles still circulated in the blood stream after four hours; however, their retention in the tumor was rather low, which was likely due to the antifouling properties of PEG.
The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TMEresponsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROSresponsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [ 1 H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TMEselective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.
Patients treated with B-cell-targeting therapies like Rituximab or Ibrutinib have decreased serological response to various vaccines. In this study, we tested serological and cellular response to SARS-CoV-2 mRNA vaccines in 16 patients treated with Ibrutinib, 16 treated with maintenance Rituximab, 18 patients with chronic lymphocytic leukaemia (CLL) with watch and wait status and 21 healthy volunteers. In comparison with the healthy volunteers, where serological response was achieved by 100% subjects, patients on B-cell-targeting therapy (Ibrutinib and Rituximab) had their response dramatically impaired. The serological response was achieved in 0% of Rituximab treated, 18% of Ibrutinib treated and 50% of untreated CLL patients. Cell-mediated immunity analysed by the whole blood Interferon-γ Release immune Assay developed in 80% of healthy controls, 62% of Rituximab treated, 75% of Ibrutinib treated and 55% of untreated CLL patients. The probability of cell-mediated immune response development negatively correlates with disease burden mainly in CLL patients. Our study shows that even though the serological response to SARS-CoV-2 vaccine is severely impaired in patients treated with B-cell-targeting therapy, the majority of these patients develop sufficient cell-mediated immunity. The vaccination of these patients therefore might be meaningful in terms of protection against SARS-CoV-2 infection. Supplementary Information The online version contains supplementary material available at 10.1007/s10238-022-00809-0.
Both gradient and block copolymers can be used as drug delivery systems, but their relative (dis)advantages remain unknown. Thus, we directly compared analogous amphiphilic gradient and block polyoxazolines for their physicochemical properties and potential as building components of nanodrugs. For this purpose, we prepared a library of 18 polymers with varying ratios of monomeric units, using 2-methyl-2-oxazoline (MeOx) as a hydrophilic monomer and 2-phenyl-2-oxazoline (PhOx), 2-(4butylphenyl)-2-oxazoline (BuPhOx), or 2-(4-butoxyphenyl)-2-oxazoline (BuOPhOx) as a hydrophobic monomer, and determined their homo/heteropolymerization kinetics. Our results showed that gradient copolymers had broader glass transition intervals and formed nanoparticles several times smaller and more compact than the corresponding block analogs. In particular, PMeOx 70 -grad-PhOx 30 and PMeOx 70 -grad-BuPhOx 30 exhibited a significantly higher drug loading capacity and entrapment efficiency than their corresponding block analogs. Notwithstanding these differences, all polymers were cyto-and hemocompatible in vitro. Therefore, analogous gradient and block copolymers may be alternatively used for specific biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.