A long-term global atmospheric reanalysis, named ''Japanese 25-year Reanalysis (JRA-25)'' was completed using the Japan Meteorological Agency (JMA) numerical assimilation and forecast system. The analysis covers the period from 1979 to 2004. This is the first long-term reanalysis undertaken in Asia. JMA's latest numerical assimilation system, and specially collected observational data, were used to generate a consistent and high-quality reanalysis dataset designed for climate research and operational monitoring and forecasts. One of the many purposes of JRA-25 is to enhance the analysis to a high quality in the Asian region.Six-hourly data assimilation cycles were performed, producing 6-hourly atmospheric analysis and forecast fields of various physical variables. The global model used in JRA-25 has a spectral resolution of T106 (equivalent to a horizontal grid size of around 120 km) and 40 vertical layers with the top level at 0.4 hPa. In addition to conventional surface and upper air observations, atmospheric motion vector (AMV) wind retrieved from geostationary satellites, brightness temperature from TIROS Operational Vertical Sounder (TOVS), precipitable water retrieved from orbital satellite microwave radiometer radiance and other satellite data are assimilated with three-dimensional variational method (3D-Var). JMA produced daily sea surface temperature (SST), sea ice and three-dimensional ozone profiles for JRA-25. A new quality control method for TOVS data was developed and applied in advance.Many advantages have been found in the JRA-25 reanalysis. Predicted 6-hour global total precipitation distribution and amount are well reproduced both in space and time. The performance of the long time series of the global precipitation is the best among the other reanalyses, with few unrealistic variations from degraded satellite data contaminated by volcanic eruptions. Secondly, JRA-25 is the first reanalysis to assimilate wind profiles around tropical cyclones reconstructed from historical best track information; tropical cyclones were analyzed properly in all the global regions. Additionally, low-level cloud along the subtropical western coast of continents is well simulated and snow depth analysis is also of a good quality. The article also covers material which requires attention when using JRA-25.
New versions of the high-resolution 20- and 60-km-mesh Meteorological Research Institute (MRI) atmospheric general circulation models (MRI-AGCM version 3.2) have been developed and used to investigate potential future changes in tropical cyclone (TC) activity. Compared with the previous version (version 3.1), version 3.2 yields a more realistic simulation of the present-day (1979–2003) global distribution of TCs. Moreover, the 20-km-mesh model version 3.2 is able to simulate extremely intense TCs (categories 4 and 5), which is the first time a global climate model has been able to simulate such extremely intense TCs through a multidecadal simulation. Future (2075–99) projections under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario are conducted using versions 3.1 and 3.2, showing consistent decreases in the number of TCs globally and in both hemispheres as climate warms. Although projected future changes in basin-scale TC numbers show some differences between the two versions, the projected frequency of TC occurrence shows a consistent decrease in the western part of the western North Pacific (WNP) and in the South Pacific Ocean (SPO), while it shows a marked increase in the central Pacific. Both versions project a future increase in the frequency of intense TCs globally; however, the degree of increase is smaller in version 3.2 than in version 3.1. This difference arises partly because version 3.2 projects a pronounced decrease in mean TC intensity in the SPO. The 20-km-mesh model version 3.2 projects a northward shift in the most intense TCs (category 5) in the WNP, indicating an increasing potential for future catastrophic damage due to TCs in this region.
A new version of the atmospheric general circulation model of the Meteorological Research Institute (MRI), with a horizontal grid size of about 20 km, has been developed. The previous version of the 20-km model, MRI-AGCM3.1, which was developed from an operational numerical weather-prediction model, provided information on possible climate change induced by global warming, including future changes in tropical cyclones, the East Asian monsoon, extreme events, and blockings. For the new version, MRI-AGCM3.2, we have introduced various new parameterization schemes that improve the model climate. Using the new model, we performed a present-day climate experiment using observed sea surface temperature. The model shows improvements in simulating heavy monthly-mean precipitation around the tropical Western Pacific, the global distribution of tropical cyclones, the seasonal march of East Asian summer monsoon, and blockings in the Pacific. Improvements in the model climatologies were confirmed numerically using skill scores (e.g., Taylor's skill score).
A new global climate model, MRI-CGCM3, has been developed at the Meteorological Research Institute (MRI). This model is an overall upgrade of MRI's former climate model MRI-CGCM2 series. MRI-CGCM3 is composed of atmosphere-land, aerosol, and ocean-ice models, and is a subset of the MRI's earth system model MRI-ESM1. Atmospheric component MRI-AGCM3 is interactively coupled with aerosol model to represent direct and indirect e¤ects of aerosols with a new cloud microphysics scheme. Basic experiments for pre-industrial control, historical and climate sensitivity are performed with MRI-CGCM3. In the pre-industrial control experiment, the model exhibits very stable behavior without climatic drifts, at least in the radiation budget, the temperature near the surface and the major indices of ocean circulations. The sea surface temperature (SST) drift is sufficiently small, while there is a 1 W m À2 heating imbalance at the surface. The model's climate sensitivity is estimated to be 2.11 K with Gregory's method. The transient climate response (TCR) to 1 % yr À1 increase of carbon dioxide (CO 2 ) concentration is 1.6 K with doubling of CO 2 concentration and 4.1 K with quadrupling of CO 2 concentration. The simulated present-day mean climate in the historical experiment is evaluated by comparison with observations, including reanalysis. The model reproduces the overall mean climate, including seasonal variation in various aspects in the atmosphere and the oceans. Variability in the simulated climate is also evaluated and is found to be realistic, including El Niñ o and Southern Oscillation and the Arctic and Antarctic oscillations. However, some important issues are identified. The simulated SST indicates generally cold bias in the Northern Hemisphere (NH) and warm bias in the Southern Hemisphere (SH), and the simulated sea ice expands excessively in the North Atlantic in winter. A double ITCZ also appears in the tropical Pacific, particularly in the austral summer.
Characteristics of the equatorial intraseasonal oscillation are studied with the use of a general circulation model which includes the Arakawa-Schubert (abbreviated as AS hereafter) model of penetrative cumulus convections. The AS model is modified by introducing the minimum value of cumulus entrainment rate of the environmental air, min, as * min=a/D, where D is the depth of the planetary boundary layer (PBL) and a is a non-negative constant. The introduction of a positive a in the AS model suppresses the activity of deep penetrative cumulus in the area where D is not sufficiently thick, which allows, in turn, an accumulation of moist air in the large-scale low level convergence zone. This process is essential in maintaining the equatorial 30-60 day oscillations, and also in simulating the Pacific subtropical high during the northern summer. Experiments are performed by changing * from 0 (ie., the original AS model), to 00 (i.e., no penetrative cumulus convection) under an aqua-planet condition.When *=0, the 30-60 day oscillation does not appear in the tropics. Instead, there exists a quasi-10 day eastward propagating oscillation with zonal wavenumber 1, which resembles a neutral Kelvin wave. Moist air is not accumulated in the `low level east-west convergence longitude associated with the flow of zonal wavenumber 1 (LLCL)' due to the rapid response of the AS model to the evaporation and moisture flux convergence by small scale motions and also due to the resulting upward transport of water vapor by penetrative cumuli to the west of the LLCL before the moist air can be accumulated in the LLCL. When *=0.1, a quasi-30 day eastward propagating oscillation with zonal wavenumber 1 grows in the model, with the moist air and the major heating found around the LLCL. The change in the heating is mostly due to the increase of middle-level convection (i.e., moist convection between adjacent vertical layers within the free atmosphere) and to the decrease of deep penetrative cumuli to the west of the LLCL. Overall characteristics of the mode are close to the observed ones. When a=oo, a quasi-45 day eastward propagating oscillation grows in the model. The structure of the heating associated with the oscillation is similar to that of the quasi-30 day oscillation.Associated with the increase of *, the static stability decreases in the low latitudes. The maximum level of the zonally averaged heating lowers due to the suppression of deep penetrative cumulus and the increase in both the middle-level convection and large-scale condensation. The maximum amplitude level of the heating associated with the equatorial intraseasonal oscillation also lowers from 300mb for *=0 to 500mb for *=0.1-*. These changes seem to provide favorable conditions for the occurrence of the equatorial intraseasonal oscillation, in agreement with linear stability studies of a CISK model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.