SummaryPhotosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer, and catalyzes light-driven water oxidation at its catalytic center, the oxygen-evolving complex (OEC) [1][2][3] . The structure of PSII has been analyzed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that OEC is a Mn4CaO5 cluster organized in an asymmetric, "distorted-chair" form 4 . This structure was further analyzed with femtosecond X-ray free electron lasers (XFEL), providing the "radiation damage-free" 5 structure. The mechanism of O=O bond formation, however, remains obscure due to the lack of intermediate state structures. Here we report the structural changes of PSII induced by 2-flash (2F) illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography (TR-SFX) with an XFEL provided by the SPring-8 angstrom compact free-electron laser (SACLA). Isomorphous differenceFourier map between the 2F and dark-adapted states revealed two areas of apparent changes; they are around QB/non-heme iron and the Mn4CaO5 cluster. The changes around the QB/non-heme iron region reflected the electron and proton transfers induced by the 2F-illumination. In the region around the Mn4CaO5 cluster, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon 2Fillumination, leading to a closer distance between another water molecule and O4, suggesting also the occurrence of proton transfer. Importantly, the 2F-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ3-oxo-bridge located in the quasi-center of Mn1 and Mn4 4,5 . This suggests an insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation 4 consistent with that proposed by Siegbahn 6,7 . Fig. 1a shows organization of the electron transfer chain of PSII in a pseudo-C2 symmetry by two subunits D1 and D2. The water-oxidation reaction proceeds via the Si-state cycle 8 (with i=0-4), where dioxygen is produced in the transition of S3→(S4)→S0 (Fig. 1b). The high-resolution structures of PSII analyzed so far were for the dark-stable S1 state 4,5 , although a few studies on the low-resolution intermediate S-state structures have been reported by TR-SFX [9][10][11] . During the revision of our manuscript, Young et al. reported a 2F-illuminated state structure at 2.25 Å resolution where no apparent changes around O5 were observed 12 , although estimations of the resolution could yield somewhat different values so that small movement of some water molecules may escape the detection. In order to achieve resolution high enough to uncover small structural changes induced by flash illuminations yet allowing Si-state transition to proceed efficiently, we determined the optimal crystal size of PSII with a maximum length of 100 µm, which diffracted up to a resolution of 2.1 Å by a SACLA-XFEL ...
BACKGROUND Patients with peripheral artery disease have an increased risk of cardiovascular morbidity and mortality. Antiplatelet agents are widely used to reduce these complications. METHODS This was a multicentre, double-blind, randomised placebo-controlled trial for which patients were recruited at 602 hospitals, clinics, or community practices from 33 countries across six continents. Eligible patients had a history of peripheral artery disease of the lower extremities (previous peripheral bypass surgery or angioplasty, limb or foot amputation, intermittent claudication with objective evidence of peripheral artery disease), of the carotid arteries (previous carotid artery revascularisation or asymptomatic carotid artery stenosis of at least 50%), or coronary artery disease with an ankle-brachial index of less than 0·90. After a 30-day run-in period, patients were randomly assigned (1:1:1) to receive oral rivaroxaban (2·5 mg twice a day) plus aspirin (100 mg once a day), rivaroxaban twice a day (5 mg with aspirin placebo once a day), or to aspirin once a day (100 mg and rivaroxaban placebo twice a day). Randomisation was computer generated. Each treatment group was double dummy, and the patient, investigators, and central study staff were masked to treatment allocation. The primary outcome was cardiovascular death, myocardial infarction or stroke; the primary peripheral artery disease outcome was major adverse limb events including major amputation. This trial is registered with ClinicalTrials.gov, number NCT01776424, and is closed to new participants. FINDINGS Between March 12, 2013, and May 10, 2016, we ; HR 0·67, 95% CI 0·45-1·00, p=0·05). The median duration of treatment was 21 months. The use of the rivaroxaban plus aspirin combination increased major bleeding compared with the aspirin alone group (77 [3%] of 2492 vs 48 [2%] of 2504; HR 1·61, 95% CI 1·12-2·31, p=0·0089), which was mainly gastrointestinal. Similarly, major bleeding occurred in 79 (3%) of 2474 patients with rivaroxaban 5 mg, and in 48 (2%) of 2504 in the aspirin alone group (HR 1·68, 95% CI 1·17-2·40; p=0·0043). INTERPRETATION Low-dose rivaroxaban taken twice a day plus aspirin once a day reduced major adverse cardiovascular and limb events when compared with aspirin alone. Although major bleeding was increased, fatal or critical organ bleeding was not. This combination therapy represents an important advance in the management of patients with peripheral artery disease. Rivaroxaban alone did not significantly reduce major adverse cardiovascular events compared with asprin alone, but reduced major adverse limb events and increased major bleeding. FUNDING Bayer AG. Methods This was a multicentre, double-blind, randomised placebo-controlled trial for which patients were recruited at 602 hospitals, clinics, or community practices from 33 countries across six continents. Eligible patients had a history of peripheral artery disease of the lower extremities (previous peripheral bypass surgery or angioplasty, limb or foot amputation, i...
Hyperglycemia in response to oral glucose loading rapidly suppresses endothelium-dependent vasodilation, probably through increased production of oxygen-derived free radicals. These findings strongly suggest that prolonged and repeated post-prandial hyperglycemia may play an important role in the development and progression of atherosclerosis.
The CD144-positive EMP exist in human plasma, and plasma CD144-EMP levels can be a clinically specific and quantitative marker of EC dysfunction and/or injury. Measurement of CD144-EMP, by providing a quantitative assessment of EC dysfunction, may be useful for identifying DM patients with increased risk of CAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.