Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg 2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg 2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg 2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.
We investigated expression profiles of microRNA (miRNA) in gastric carcinomas by use of a miRNA microarray platform covering a total of 470 human miRNAs. We identified 39 differentially expressed miRNAs in gastric carcinoma, of which six were significantly downregulated and the other 33 were upregulated. We found that miRNA-375 (miR-375) was the most downregulated and that its ectopic expression in gastric carcinoma cells markedly reduced cell viability via the caspase-mediated apoptosis pathway. Interestingly, we found that expression of miR-375 inhibited expression of PDK1, which is a direct target of miR-375, followed by suppression of Akt phosphorylation. Further analysis by gene expression microarray revealed that 14-3-3zeta, a potent antiapoptotic gene, was significantly downregulated at both the mRNA and protein levels in cells transfected with miR-375. The activity of a luciferase reporter containing the miR-375 binding sequence at the 3' untranslated region (UTR) of 14-3-3zeta mRNA was repressed by the ectopic expression of miR-375, suggesting that miR-375 targets the 3' UTR of 14-3-3zeta. In addition, knockdown of either PDK1 or 14-3-3zeta in gastric carcinoma cells induced caspase activation, which was also observed in miR-375-transfected cells, suggesting that miR-375 may exert its proapoptotic function, at least in part, through the downregulation of PDK1 and 14-3-3zeta. Taken together, we propose that miR-375 is a candidate tumor suppressor miRNA in gastric carcinoma.
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most important outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope, and it started in 2014 March. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 yr of observations (61.5 nights), and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i ∼ 26.4, ∼26.5, and ∼27.0 mag, respectively (5 σ for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0${^{\prime\prime}_{.}}$6 in the i band in the Wide layer. We show that we achieve 1%–2% point spread function (PSF) photometry (root mean square) both internally and externally (against Pan-STARRS1), and ∼10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp.
We investigated expression profiles of microRNA (miRNA) in renal cell carcinoma [clear cell carcinomas (CCC) and chromophobe renal cell carcinomas (ChCC)] and in normal kidneys by using a miRNA microarray platform which covers a total of 470 human miRNAs (Sanger miRBase release 9.1). Unsupervised hierarchical cluster analysis revealed that CCC and ChCC were separable and that no subgroups were identified in CCCs. We found that 43 miRNAs were differentially expressed between CCC and normal kidney, of which 37 were significantly down-regulated in CCC and the other 6 were up-regulated. We also found that 57 miRNAs were differentially expressed between ChCC and normal kidney, of which 51 were significantly down-regulated in ChCC and the other 6 were up-regulated. Together, these observations indicate that expression of miRNAs tends to be down-regulated in both CCC and ChCC compared with normal kidney. We observed that miR-141 and miR-200c were the most significantly down-regulated miRNAs in CCCs. Indeed, in all cases of CCC analysed, both miR-141 and miR-200c were down-regulated in comparison with normal kidney. Microarray data and quantitative RT-PCR showed that these two miRNAs were expressed concordantly. TargetScan algorithm revealed that ZFHX1B mRNA is a hypothetical target of both miR-141 and -200c. We established by quantitative RT-PCR that, in CCCs in which miR-141 and miR-200c were down-regulated, ZFHX1B, a transcriptional repressor for CDH1/E-cadherin, tended to be up-regulated. Furthermore, we found that overexpression of miR-141 and miR-200c caused down-regulation of ZFHX1B and up-regulation of E-cadherin in two renal carcinoma cell lines, ACHN and 786-O. On the basis of these findings, we suggest that down-regulation of miR-141 and miR-200c in CCCs might be involved in suppression of CDH1/E-cadherin transcription via up-regulation of ZFHX1B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.