On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
We report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts. Light curves, including high signal-to-noise HST data, and spectra of six SNe Ia that were discovered during 2001 are presented. Additionally, for the two SNe with z > 1, we present groundbased J-band photometry from Gemini and the VLT. These are among the most distant SNe Ia for which ground based near-IR observations have been obtained. We add these six SNe Ia together with other data sets that have recently become available in the literature to the Union compilation (Kowalski et al. 2008). We have made a number of refinements to the Union analysis chain, the most important ones being the refitting of all light curves with the SALT2 fitter and an improved handling of systematic errors. We call this new compilation, consisting of 557 supernovae, the Union2 compilation. The flat concordance ΛCDM model remains an excellent fit to the Union2 data with the best fit constant equation of state parameter w = −0.997 +0.050 −0.054 (stat)+0.077 −0.082 (stat + sys together) for a flat universe, or w = −1.035 +0.055 −0.059 (stat)+0.093 −0.097 (stat + sys together) with curvature. We also present improved constraints on w(z). While no significant change in w with redshift is detected, there is still considerable room for evolution in w. The strength of the constraints depend strongly on redshift. In particular, at z 1, the existence and nature of dark energy are only weakly constrained by the data.
We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the HST Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Fourteen of these SNe Ia pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Ten of our new SNe Ia are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zeropoint at the count rates appropriate for very distant SNe Ia. Adding these supernovae improves the best combined constraint on dark energy density, ρ DE (z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat ΛCDM universe, we find Ω Λ = 0.729 +0.014 −0.014 (68% CL including systematic errors). For a flat wCDM model, we measure a constant dark energy equation-of-state parameter w = −1.013 +0.068 −0.073 (68% CL). Curvature is constrained to ∼ 0.7% in the owCDM model and to ∼ 2% in a model in which dark energy is allowed to vary with parameters w 0 and w a . Tightening further the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on HST.The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union ⋆ is less than the mass threshold. We begin by noting that.We can then integrate this probability over all true host masses less than the threshold:⋆ )P (m true ⋆ ) up to a normalization constant found by requiring the integral to be unity when integrating over all possible true masses. P (m true ⋆ ) is estimated from the observed distribution for each type of survey. The SNLS (Sullivan et al. 2010) and SDSS (Lampeitl et al. 2010) host masses were assumed to be representative of untargeted surveys, while the mass distribution in Kelly et al. (2010) was assumed typical of nearby targeted surveys. As these distributions are approximately log-normal, we use this model for P (m true ⋆) using the mean and RMS from the log of the host masses from these surveys (with the average measurement errors subtracted in quadrature), giving log 10 P (m true ⋆ ) = N (µ = 9.88, σ 2 = 0.92 2 ) for untargeted surveys and log 10 P (m true ⋆ ) = N (10.75, 0.66 2 ) for targeted surveys. When host mass measurements are available, P (m obs ⋆ |m true ⋆ ) is also modeled as a log-normal; when no measurement is available, a flat distribution is used.For a supernova from an untargeted survey with no host mass measurement (including supernovae presented in this paper which are not in a cluster), P (m trueis the integral of P (m true ⋆ ) up to the threshold mass: 0.55. Similarly, nearby supernovae from targeted surveys w...
We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift "desert" between low-and high-redshift SN Ia surveys. Within the framework of the mlcs2k2 light-curve fitting method, we use the SDSS-II SN sample to infer the mean reddening parameter for host galaxies, R V = 2.18 ± 0.14 stat ± 0.48 syst , and find that the intrinsic distribution of host-galaxy extinction is well fitted by an exponential function, P (A V) = exp(−A V /τ V), with τ V = 0.334 ± 0.088 mag. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey (SNLS), the Hubble Space Telescope (HST), and a compilation of Nearby SN Ia measurements. A new feature in our analysis is the use of detailed Monte Carlo simulations of all surveys to account for selection biases, including those from spectroscopic targeting. Combining the SN Hubble diagram with measurements of baryon acoustic oscillations from the SDSS Luminous Red Galaxy sample and with cosmic microwave background temperature anisotropy measurements from the Wilkinson Microwave Anisotropy Probe, we estimate the cosmological parameters w and Ω M , assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. We also consider constraints upon Ω M and Ω Λ for a cosmological constant model (ΛCDM) with w = −1 and non-zero spatial curvature. For the FwCDM model and the combined sample of 288 SNe Ia,
Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera-electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray-emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.