Autophagy is a bulk protein degradation system that likely plays an important role in normal proximal tubule function and recovery from acute ischemic kidney injury. Using conditional Atg5 gene deletion to eliminate autophagy in the proximal tubule, we determined whether autophagy prevents accumulation of damaged proteins and organelles with aging and ischemic renal injury. Autophagy-deficient cells accumulated deformed mitochondria and cytoplasmic inclusions, leading to cellular hypertrophy and eventual degeneration not observed in wildtype controls. In autophagydeficient mice, I/R injury increased proximal tubule cell apoptosis with accumulation of p62 and ubiquitin positive cytoplasmic inclusions. Compared with control animals, autophagy-deficient mice exhibited significantly greater elevations in serum urea nitrogen and creatinine. These data suggest that autophagy maintains proximal tubule cell homeostasis and protects against ischemic injury. Enhancing autophagy may provide a novel therapeutic approach to minimize acute kidney injury and slow CKD progression.
Excessive fat intake contributes to the progression of metabolic diseases via cellular injury and inflammation, a process termed lipotoxicity. Here, we investigated the role of lysosomal dysfunction and impaired autophagic flux in the pathogenesis of lipotoxicity in the kidney. In mice, a high-fat diet (HFD) resulted in an accumulation of phospholipids in enlarged lysosomes within kidney proximal tubular cells (PTCs). In isolated PTCs treated with palmitic acid, autophagic degradation activity progressively stagnated in association with impaired lysosomal acidification and excessive lipid accumulation. Pulse-chase experiments revealed that the accumulated lipids originated from cellular membranes. In mice with induced PTC-specific ablation of autophagy, PTCs of HFD-mice exhibited greater accumulation of ubiquitin-positive protein aggregates normally removed by autophagy than did PTCs of mice fed a normal diet. Furthermore, HFD-mice had no capacity to augment autophagic activity upon another pathologic stress. Autophagy ablation also exaggerated HFD-induced mitochondrial dysfunction and inflammasome activation. Moreover, renal ischemia-reperfusion induced greater injury in HFD-mice than in mice fed a normal diet, and ablation of autophagy further exacerbated this effect. Finally, we detected similarly enhanced phospholipid accumulation in enlarged lysosomes and impaired autophagic flux in the kidneys of obese patients compared with nonobese patients. These findings provide key insights regarding the pathophysiology of lipotoxicity in the kidney and clues to a novel treatment for obesity-related kidney diseases.
Autophagy plays an essential role in cellular homeostasis through the quality control of proteins and organelles. Although a time-dependent decline in autophagic activity is believed to be involved in the aging process, the issue remains controversial. We previously demonstrated that autophagy maintains proximal tubular cell homeostasis and protects against kidney injury. Here, we extend that study and examine how autophagy is involved in kidney aging. Unexpectedly, the basal autophagic activity was higher in the aged kidney than that in young kidney; short-term cessation of autophagy in tamoxifeninducible proximal tubule-specific autophagy-deficient mice increased the accumulation of SQSTM1/p62-and ubiquitin-positive aggregates in the aged kidney. By contrast, autophagic flux in response to metabolic stress was blunted with aging, as demonstrated by the observation that transgenic mice expressing a green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3B fusion construct, showed a drastic increase of GFP-positive puncta in response to starvation in young mice compared to a slight increase observed in aged mice. Finally, proximal tubule-specific autophagy-deficient mice at 24 mo of age exhibited a significant deterioration in kidney function and fibrosis concomitant with mitochondrial dysfunction as well as mitochondrial DNA abnormalities and nuclear DNA damage, all of which are hallmark characteristics of cellular senescence. These results suggest that age-dependent high basal autophagy plays a crucial role in counteracting kidney aging through mitochondrial quality control. Furthermore, a reduced capacity for upregulation of autophagic flux in response to metabolic stress may be associated with age-related kidney diseases.
Advanced glycation end products (AGEs) are involved in the progression of diabetic nephropathy. AGEs filtered by glomeruli or delivered from the circulation are endocytosed and degraded in the lysosomes of kidney proximal tubular epithelial cells (PTECs). Autophagy is a highly conserved degradation system that regulates intracellular homeostasis by engulfing cytoplasmic components. We have recently demonstrated that autophagic degradation of damaged lysosomes is indispensable for cellular homeostasis in some settings. In this study, we tested the hypothesis that autophagy could contribute to the degradation of AGEs in the diabetic kidney by modulating lysosomal biogenesis. Both a high-glucose and exogenous AGE overload gradually blunted autophagic flux in the cultured PTECs. AGE overload upregulated lysosomal biogenesis and function in vitro, which was inhibited in autophagy-deficient PTECs because of the impaired nuclear translocation of transcription factor EB. Consistently, streptozotocin-treated, PTEC-specific, autophagy-deficient mice failed to upregulate lysosomal biogenesis and exhibited the accumulation of AGEs in the glomeruli and renal vasculature as well as in the PTECs, along with worsened inflammation and fibrosis. These results indicate that autophagy contributes to the degradation of AGEs by the upregulation of lysosomal biogenesis and function in diabetic nephropathy. Strategies aimed at promoting lysosomal function hold promise for treating diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.