Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[ 18 F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.
SUMMARY Aerobic glycolysis (Warburg effect) is a core hallmark of cancer, but the molecular mechanisms underlying it remain unclear. Here, we identify an unexpected central role for mTORC2 in cancer metabolic reprogramming where it controls glycolytic metabolism by ultimately regulating the cellular level of c-Myc. We show that mTORC2 promotes inactivating phosphorylation of class IIa histone deacetylases that leads to the acetylation of FoxO1 and FoxO3, and this in turn releases c-Myc from a suppressive miR-34c-dependent network. These central features of activated mTORC2 signaling, acetylated FoxO and c-Myc levels are highly inter-correlated in clinical samples, and with shorter survival of GBM patients. These results identify a specific, Akt-independent, role for mTORC2 in regulating glycolytic metabolism in cancer.
Background: The discovery and development of novel biomarkers that could facilitate early diagnosis and thus prevent the progression of atherosclerosis-related diabetes mellitus (DM), cerebral infarction (CI), and cardiovascular disease (CVD) has garnered much research interest. Notably, recent reports have described a number of highly sensitive antibody markers. In this study, we aimed to identify additional antibody markers that would facilitate screening. Methods:The amplified luminescent proximity homogeneous assay (AlphaLISA) method, which incorporates glutathione-or streptavidin-donor beads and anti-human-IgG-acceptor beads, was used to evaluate serum antibody levels in serum samples. The protein array method was used for the initial screening, and peptide arrays were used to identify epitope sites. Results:The protein array identified SH3 domain-binding protein 5 (SH3BP5) as a target antigen of serum IgG antibodies in the sera of patients with atherosclerosis. We prepared recombinant glutathione S-transferase (GST)-fused SH3BP5 protein. Peptide arrays revealed that the epitope site recognized by serum antibodies is located within amino acids 161-174 of SH3BP5. AlphaLISA revealed significantly higher serum antibody levels against both the SH3BP5 protein and peptide in patients with DM, acute-phase CI, transient ischemic attack, CVD or chronic kidney disease (CKD), than in healthy donors. Furthermore, areas under the receiver operating characteristic curves of these antibodies were higher in patients with CKD and DM than in other patients. Spearman correlation analysis revealed associations between the serum antibody levels against SH3BP5 peptide and artery stenosis, hypertension, and smoking. Conclusions:The serum anti-SH3BP5 antibody marker appears to be useful for estimating the progress of atherosclerosis and may discriminate atherosclerosis associated with hypertension and/or habitual smoking.
Summary Intratumoral heterogeneity of signaling networks may contribute to targeted cancer therapy resistance, including in the highly lethal brain cancer glioblastoma (GBM). We performed single cell phosphoproteomics on a patient-derived in vivo GBM model of mTOR kinase inhibitor (mTORki) resistance and coupled it to an analytical approach for detecting changes in signaling coordination. Alterations in the protein signaling coordination were resolved as early as 2.5 days after treatment, anticipating drug resistance long before it was clinically manifest. Combination therapies were identified that resulted in complete and sustained tumor suppression in vivo. This approach may identify actionable alterations in signal coordination that underlie adaptive resistance, which can be suppressed through combination drug therapy, including non-obvious drug combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.