Background and study aims Decisions concerning additional surgery after endoscopic resection of T1 colorectal cancer (CRC) are difficult because preoperative prediction of lymph node metastasis (LNM) is problematic. We investigated whether artificial intelligence can predict LNM presence, thus minimizing the need for additional surgery. Patients and methods Data on 690 consecutive patients with T1 CRCs that were surgically resected in 2001 – 2016 were retrospectively analyzed. We divided patients into two groups according to date: data from 590 patients were used for machine learning for the artificial intelligence model, and the remaining 100 patients were included for model validation. The artificial intelligence model analyzed 45 clinicopathological factors and then predicted positivity or negativity for LNM. Operative specimens were used as the gold standard for the presence of LNM. The artificial intelligence model was validated by calculating the sensitivity, specificity, and accuracy for predicting LNM, and comparing these data with those of the American, European, and Japanese guidelines. Results Sensitivity was 100 % (95 % confidence interval [CI] 72 % to 100 %) in all models. Specificity of the artificial intelligence model and the American, European, and Japanese guidelines was 66 % (95 %CI 56 % to 76 %), 44 % (95 %CI 34 % to 55 %), 0 % (95 %CI 0 % to 3 %), and 0 % (95 %CI 0 % to 3 %), respectively; and accuracy was 69 % (95 %CI 59 % to 78 %), 49 % (95 %CI 39 % to 59 %), 9 % (95 %CI 4 % to 16 %), and 9 % (95 %CI 4 % – 16 %), respectively. The rates of unnecessary additional surgery attributable to misdiagnosing LNM-negative patients as having LNM were: 77 % (95 %CI 62 % to 89 %) for the artificial intelligence model, and 85 % (95 %CI 73 % to 93 %; P < 0.001), 91 % (95 %CI 84 % to 96 %; P < 0.001), and 91 % (95 %CI 84 % to 96 %; P < 0.001) for the American, European, and Japanese guidelines, respectively. Conclusions Compared with current guidelines, artificial intelligence significantly reduced unnecessary additional surgery after endoscopic resection of T1 CRC without missing LNM positivity.
Objectives: Ulcerative colitis-associated neoplasias (UCAN) are often flat with an indistinct boundary from surrounding tissues, which makes differentiating UCAN from non-neoplasias difficult. Pit pattern (PIT) has been reported as one of the most effective indicators to identify UCAN. However, regenerated mucosa is also often diagnosed as a neoplastic PIT. Endocytoscopy (EC) allows visualization of cell nuclei. The aim of this retrospective study was to demonstrate the diagnostic ability of combined EC irregularly-formed nuclei with PIT (EC-IN-PIT) diagnosis to identify UCAN.Methods: This study involved patients with ulcerative colitis whose lesions were observed by EC. Each lesion was diagnosed by two independent expert endoscopists, using two types of diagnostic strategies: PIT alone and EC-IN-PIT. We evaluated and compared the diagnostic abilities of PIT alone and EC-IN-PIT. We also examined the difference in the diagnostic abilities of an EC-IN-PIT diagnosis according to endoscopic inflammation severity. Results:We analyzed 103 lesions from 62 patients; 23 lesions were UCAN and 80 were non-neoplastic. EC-IN-PIT diagnosis had a significantly higher specificity and accuracy compared with PIT alone: 84% versus 58% (P < 0.001), and 88% versus 67% (P < 0.01), respectively. The specificity and accuracy were significantly higher for Mayo endoscopic score (MES) 0-1 than MES 2-3: 93% versus 68% (P < 0.001) and 95% versus 74% (P < 0.001), respectively.Conclusions: Our novel EC-IN-PIT strategy had a better diagnostic ability than PIT alone to predict UCAN from suspected and initially detected lesions using conventional colonoscopy. UMIN clinical trial (UMIN000040698).
Purpose Although some studies have reported differences in clinicopathological features between left- and right-sided advanced colorectal cancer (CRC), there are few reports regarding early-stage disease. In this study, we aimed to compare the clinicopathological features of left- and right-sided T1 CRC. Methods Subjects were 1142 cases with T1 CRC undergoing surgical or endoscopic resection between 2001 and 2018 at Showa University Northern Yokohama Hospital. Of these, 776 cases were left-sided (descending colon to rectum) and 366 cases were right-sided (cecum to transverse colon). We compared clinical (patients age, sex, tumor size, morphology, initial treatment) and pathological features (invasion depth, histological grade, lymphatic invasion, vascular invasion, tumor budding) including lymph node metastasis (LNM). Results Left-sided T1 CRC showed significantly higher rates of LNM (left-sided 12.0% vs. right-sided 5.4%, P < 0.05) and lymphatic invasion (left-sided 32.7% vs. right-sided 23.2%, P < 0.05). Especially, the sigmoid colon and rectum showed higher rates of LNM (12.4% and 12.1%, respectively) than other locations. Patients with left-sided T1 CRC were younger than those with right-sided T1 CRC (64.9 years ±11.5 years vs. 68.7 ± 11.6 years, P < 0.05), as well as significantly lower rates of poorly differentiated carcinoma/mucinous carcinoma than right-sided T1 CRC (11.6% vs. 16.1%, P < 0.05). Conclusion Left-sided T1 CRC, especially in the sigmoid colon and rectum, exhibited higher rates of LNM than right-sided T1 CRC, followed by higher rates of lymphatic invasion. These results suggest that tumor location should be considered in decisions regarding additional surgery after endoscopic resection. Trial registration This study was registered with the University Hospital Medical Network Clinical Trials Registry (UMIN 000032733).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.