Pseudomonas aeruginosa produces siderophores, pyoverdin and pyochelin, for high-affinity iron uptake. To investigate their contribution to P. aeruginosa infections, we constructed allelic exchange mutants from strain PAO1 which were deficient in producing one or both of the siderophores. When inoculated into the calf muscles of immunosuppressed mice, pyochelin-deficient and pyoverdin-deficient mutants grew and killed the animals as efficiently as PAO1. In contrast, the pyochelin-and pyoverdin-deficient (double) mutant did not show lethal virulence, although it did infect the muscles. On the other hand, when inoculated intranasally, all mutants grew in the lungs and killed immunosuppressed mice. Compared with PAO1, however, the pyoverdin-deficient mutant and the double mutant grew poorly in the lungs, and the latter was significantly attenuated for virulence. Irrespective of the inoculation route, the pyoverdin-deficient and doubly deficient mutants detected in the blood were significantly less numerous than PAO1. Additionally, in vitro examination demonstrated that the growth of the double mutant was extremely reduced under a free-iron-restricted condition with apotransferrin but that the growth reduction was completely canceled by supplementation with hemoglobin as a heme source. These results suggest that both pyoverdin and pyochelin are required for efficient bacterial growth and full expression of virulence in P. aeruginosa infection, although pyoverdin may be comparatively more important for bacterial growth and dissemination. However, the siderophores were not always required for infection. It is possible that non-siderophore-mediated iron acquisition, such as via heme uptake, might also play an important role in P. aeruginosa infections.
Interactions between biofilm cells of Pseudomonas aeruginosa and levofloxacin were studied. P. aeruginosa incubated for 6 days with Teflon sheets formed a biofilm on its surface. Against the biofilm bacteria, levofloxacin at an MIC determined by the standard method for the strain was highly bactericidal whereas gentamicin, ceftazidime, and ciprofloxacin showed no significant killing activity. Levofloxacin, ciprofloxacin, and gentamicin, but not ceftazidime, exhibited killing activity against nongrowing cells of the strain incubated in phosphate buffer. In addition, levofloxacin, ciprofloxacin, and ceftazidime, but not gentamicin, showed the ability to penetrate an agar containing alginate. These findings may explain the efficacy of levofloxacin and the ineffectiveness of gentamicin and ceftazidime against biofilm bacteria; however, the cause of the ineffectiveness of ciprofloxacin still remains to be determined. In experimental pneumonia in guinea pigs, in which the biofilm mode of growth of the strain was observed in the lung, only levofloxacin exhibited substantial therapeutic efficacy. These findings suggest the significant role of levofloxacin in therapy of biofilm bacterium-associated infectious diseases.
To investigate the contribution of the TonB protein to high-affinity iron acquisition in Pseudomonas aeruginosa, we constructed tonB-inactivated mutants from strain PAO1 and its derivative deficient in producing the siderophores pyoverdin and pyochelin. The tonB mutants could not grow in a free-iron-restricted medium prepared by apotransferrin addition, even though the medium was supplemented with each purified siderophore or with a heme source (hemoglobin or hemin). The tonB inactivation was shown to make P. aeruginosa unable to acquire iron from the transferrin with either siderophore. Introduction of a plasmid carrying the intact tonB gene restored growth of the tonB mutant of PAO1 in the free-iron-restricted medium without any supplements and restored growth of the tonB mutant of the siderophore-deficient derivative in the medium supplemented with pyoverdin, pyochelin, hemoglobin, or hemin. In addition, animal experiments showed that, in contrast to PAO1, the tonB mutant of PAO1 could not grow in vivo, such as in the muscles and lungs of immunosuppressed mice, and could not kill any of the animals. The in vivo growth ability and lethal virulence were also restored by introduction of the tonB-carrying plasmid in the tonB mutant. These results indicate clearly that the intact tonB gene-and, therefore, the TonB protein encoded by it-is essential for iron acquisition mediated by pyoverdin and pyochelin and via heme uptake in P. aeruginosa and suggest that the TonB-dependent iron acquisition may be essential for P. aeruginosa to infect the animal host.
This study established a rat model of foreign body-associated urinary tract infection. A spiral polyethylene tube (PT) was placed transurethrally into the bladder without surgical manipulation, followed by transurethral inoculation with Pseudomonas aeruginosa. The persistence of P. aeruginosa in the kidneys and bladder was significantly enhanced by placement of the PT, whereas the bacteria were eliminated rapidly from the urinary tract in the animals without the PT. Scanning electron microscopy revealed a thick biofilm on the surface of the PT from the early stage of infection. Histopathologically, acute pyelonephritis was followed by chronic renal inflammation as well as continuous and sporadic polymorphonuclear leukocyte accumulation and hemorrhage in the pelvis and adjacent tissues, suggesting continuous ascending introduction of the bacteria from the biofilm adhering to the PT. We believe our model simulates the pathophysiology of foreign body-associated urinary tract infection characterized by biofilm formation on the surface of a foreign body.Key words: Rat model, Pseudomonas aeruginosa, Urinary tract infection, Foreign body-associated UTI Urinary tract infections (UTI) associated with foreign bodies including urinary catheters and/or stents are some of the most common and problematic of hospitalacquired infections (3, 16). Typically, the biofilm mode of bacterial growth on the surface of the urinary catheter and adjacent mucosa accounts for the pathophysiology of foreign body-associated UTI (6-8). The role of bacterial biofilms on the surface of urinary catheters in UTI has been studied in rabbit models (5, 13). To determine the pathogenesis of foreign body-associated UTI in terms of its immunological and bacteriological aspects, numerous efforts have been made to establish rodent models of foreign body-associated UTI. These include models in which UTI was induced by placement of foreign bodies, such as glass beads (I), zinc rings (10, 12, 15), catheter segments (4), sutures (11), and polyurethane sponges, into the bladder (9). These models, however, have had few clinical parallels mainly because surgical manipulation to implant the foreign body into the bladder could not be avoided. Surgical incision of the bladder
Frozen animal tissues without cryoprotectant have been thought to be inappropriate for use as a nuclear donor for somatic cell nuclear transfer (SCNT). We report the cloning of a bull using cells retrieved from testicles that had been taken from a dead animal and frozen without cryoprotectant in a −80°C freezer for 10 years. We obtained live cells from defrosted pieces of the spermatic cords of frozen testicles. The cells proliferated actively in culture and were apparently normal. We transferred 16 SCNT embryos from these cells into 16 synchronized recipient animals. We obtained five pregnancies and four cloned calves developed to term. Our results indicate that complete genome sets are maintained in mammalian organs even after long-term frozen-storage without cryoprotectant, and that live clones can be produced from the recovered cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.