Despite their clinical significance, characterization of balanced chromosomal abnormalities (BCAs) has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and revealed complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. This study proposes that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements, and provides insight into novel pathogenic mechanisms such as altered regulation due to changes in chromosome topology.
Restrictive dermopathy (RD), also called tight skin contracture syndrome (OMIM 275210), is a rare disorder mainly characterized by intrauterine growth retardation, tight and rigid skin with erosions, prominent superficial vasculature and epidermal hyperkeratosis, facial features (small mouth, small pinched nose and micrognathia), sparse/absent eyelashes and eyebrows, mineralization defects of the skull, thin dysplastic clavicles, pulmonary hypoplasia, multiple joint contractures and an early neonatal lethal course. Liveborn children usually die within the first week of life. The overall prevalence of consanguineous cases suggested an autosomal recessive inheritance. We explored nine fetuses/newborns children with RD. Two were found to have an heterozygous splicing mutation in the LMNA gene, leading to the complete or partial loss of exon 11 in mRNAs encoding Lamin A and resulting in a truncated Prelamin A protein. Lamins are major constituents of the nuclear lamina, a filamentous meshwork underlying the inner nuclear envelope. In the other seven patients, a unique heterozygous insertion leading to the creation of a premature termination codon was identified in the gene ZMPSTE24, also known as FACE-1 in human. This gene encodes a metalloproteinase specifically involved in the post-translational processing of Lamin A precursor. In all patients carrying a ZMPSTE24 mutation, loss of expression of Lamin A as well as abnormal patterns of nuclear sizes and shapes and mislocalization of Lamin-associated proteins was evidenced. Our results indicate that a common pathogenetic pathway, involving defects of the nuclear lamina and matrix, is involved in all RD cases. RD is thus one of the most deleterious laminopathies identified so far in humans caused by (primary or secondary) A-type Lamin defects and nuclear structural and functional alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.