Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca2+ release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment.
It has been a long debate whether the 98% ‘non-coding’ fraction of human genome can encode functional proteins besides short peptides. With full-length translating mRNA sequencing and ribosome profiling, we found that up to 3330 long non-coding RNAs (lncRNAs) were bound to ribosomes with active translation elongation. With shotgun proteomics, 308 lncRNA-encoded new proteins were detected. A total of 207 unique peptides of these new proteins were verified by multiple reaction monitoring (MRM) and/or parallel reaction monitoring (PRM); and 10 new proteins were verified by immunoblotting. We found that these new proteins deviated from the canonical proteins with various physical and chemical properties, and emerged mostly in primates during evolution. We further deduced the protein functions by the assays of translation efficiency, RNA folding and intracellular localizations. As the new protein UBAP1-AST6 is localized in the nucleoli and is preferentially expressed by lung cancer cell lines, we biologically verified that it has a function associated with cell proliferation. In sum, we experimentally evidenced a hidden human functional proteome encoded by purported lncRNAs, suggesting a resource for annotating new human proteins.
Finding protein evidence (PE) for protein coding genes is a primary task of the Phase I Chromosome-Centric Human Proteome Project (C-HPP). Currently, there are 2948 PE level 2-4 coding genes per neXtProt, which are deemed missing proteins in the human proteome. As most samples prepared and analyzed in the C-HPP framework were focusing on detergent soluble proteins, we posit that as a natural composition the cytoplasmic detergent-insoluble proteins (DIPs) represent a source of finding missing proteins. We optimized a workflow and separated cytoplasmic DIPs from three human lung and three human hepatoma cell lines via differential speed centrifugation. We verified that the detergent-soluble proteins (DSPs) could be sufficiently depleted and the cytoplasmic DIP isolation was partially reproducible with Spearman r > 0.70 according to two independent SILAC MS experiments. Through label-free MS, we identified 4524 and 4156 DIPs from lung and liver cells, respectively. Among them, a total of 23 missing proteins (22 PE2 and 1 PE4) were identified by MS, and 18 of them had translation evidence; in addition, six PE5 proteins were identified by MS, three with translation evidence. We showed that cytoplasmic DIPs were not an enrichment of transmembrane proteins and were chromosome-, cell type-, and tissue-specific. Furthermore, we demonstrated that DIPs were distinct from DSPs in terms of structural and physical-chemical features. In conclusion, we have found 23 missing proteins and 6 PE5 proteins from the cytoplasmic insoluble proteome that is biologically and physical-chemically different from the soluble proteome, suggesting that cytoplasmic DIPs carry comprehensive and valuable information for finding PE of missing proteins. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001694.
Chromosome-centric human proteome project (C-HPP) aims at differentiating chromosome-based and tissue-specific protein compositions in terms of protein expression, quantification, and modification. We previously found that the analysis of translating mRNA (mRNA attached to ribosome-nascent chain complex, RNC-mRNA) can explain over 94% of mRNA-protein abundance. Therefore, we propose here to use full-length RNC-mRNA information to illustrate protein expression both qualitatively and quantitatively. We performed RNA-seq on RNC-mRNA (RNC-seq) and detected 12,758 and 14,113 translating genes in human normal bronchial epithelial (HBE) cells and human colorectal adenocarcinoma Caco-2 cells, respectively. We found that most of these genes were mapped with >80% of coding sequence coverage. In Caco-2 cells, we provided translating evidence on 4180 significant single-nucleotide variations. While using RNC-mRNA data as a standard for proteomic data integration, both translating and protein evidence of 7876 genes can be acquired from four interlaboratory data sets with different MS platforms. In addition, we detected 1397 noncoding mRNAs that were attached to ribosomes, suggesting a potential source of new protein explorations. By comparing the two cell lines, a total of 677 differentially translated genes were found to be nonevenly distributed across chromosomes. In addition, 2105 genes in Caco-2 and 750 genes in HBE cells are expressed in a cell-specific manner. These genes are significantly and specifically clustered on multiple chromosomes, such as chromosome 19. We conclude that HPP/C-HPP investigations can be considerably improved by integrating RNC-mRNA analysis with MS, bioinformatics, and antibody-based verifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.