Background-Marijuana intoxication appears to impair response inhibition, but it is unclear if impaired inhibition and associated brain abnormalities persist after prolonged abstinence among adolescent users. We hypothesized that brain activation during a go/no-go task would show persistent abnormalities in adolescent marijuana users after 28 days of abstinence.
Background Very few studies have been performed to understand the underlying neural substrates of adolescent major depressive disorder (MDD). Studies in depressed adults have demonstrated that the subgenual anterior cingulate cortex (sgACC) plays a pivotal role in depression and have revealed aberrant patterns of resting-state functional connectivity (RSFC). Here, we examine the RSFC of the sgACC in medication-naïve first-episode adolescents with MDD. Methods Twenty-three adolescents with MDD and 36 well-matched control subjects underwent functional magnetic resonance imaging to assess the RSFC of the sgACC. Results We observed elevated connectivity between the sgACC and the insula and between the sgACC and the amygdala in the MDD group compared with the control subjects. Decreased connectivity between the sgACC and the precuneus was also found in the MDD group relative to the control subjects. Within the MDD group, higher levels of depression significantly correlated with decreased connectivity between the sgACC and left precuneus. Increased rumination was significantly associated with reduced connectivity between sgACC and the middle and inferior frontal gyri in the MDD group. Conclusions Our study is the first to examine sgACC connectivity in medication-naïve first-episode adolescents with MDD compared with well-matched control participants. Our results suggest aberrant functional connectivity among the brain networks responsible for salience attribution, executive control, and the resting-state in the MDD group compared with the control participants. Our findings raise the possibility that therapeutic interventions that can restore the functional connectivity among these networks to that typical of healthy adolescents might be a fruitful avenue for future research.
Anorexia nervosa (AN) is a severe psychiatric disorder associated with food avoidance and malnutrition. In this study, we wanted to test whether we would find brain reward alterations in AN, compared with individuals with normal or increased body weight. We studied 21 underweight, restricting-type AN (age M 22.5, SD 5.8 years), 19 obese (age M 27.1, SD 6.7 years), and 23 healthy control women (age M 24.8, SD 5.6 years), using blood oxygen level-dependent functional magnetic resonance brain imaging together with a rewardconditioning task. This paradigm involves learning the association between conditioned visual stimuli and unconditioned taste stimuli, as well as the unexpected violation of those learned associations. The task has been associated with activation of brain dopamine reward circuits, and it allows the comparison of actual brain response with expected brain activation based on established neuronal models. A group-by-task condition analysis (family-wise-error-corrected Po0.05) indicated that the orbitofrontal cortex differentiated all three groups. The dopamine model reward-learning signal distinguished groups in the anteroventral striatum, insula, and prefrontal cortex (Po0.001, 25 voxel cluster threshold), with brain responses that were greater in the AN group, but lesser in the obese group, compared with controls. These results suggest that brain reward circuits are more responsive to food stimuli in AN, but less responsive in obese women. The mechanism for this association is uncertain, but these brain reward response patterns could be biomarkers for the respective weight state.
Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here the ENIGMA consortium presents the largest ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and brain size (indexed by intracranial volume). Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets (N = 1,443 and 1,113, respectively), we found several asymmetries showing modest but highly reliable heritability. The structural asymmetries identified, and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.Significance StatementLeft-right asymmetry is a key feature of the human brain's structure and function. It remains unclear which cortical regions are asymmetrical on average in the population, and how biological factors such as age, sex and genetic variation affect these asymmetries. Here we describe by far the largest ever study of cerebral cortical brain asymmetry, based on data from 17,141 participants. We found a global anterior-posterior 'torque' pattern in cortical thickness, together with various regional asymmetries at the population level, which have not been previously described, as well as effects of age, sex, and heritability estimates. From these data, we have created an on-line resource that will serve future studies of human brain anatomy in health and disease.
Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.