scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, .
scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal "Modified BSD" open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image.
In normal tissue repair, macrophages exhibit a pro-inflammatory phenotype (M1) at early stages and a pro-healing phenotype (M2) at later stages. We have previously shown that M1 macrophages initiate angiogenesis while M2 macrophages promote vessel maturation. Therefore, we reasoned that scaffolds that promote sequential M1 and M2 polarization of infiltrating macrophages should result in enhanced angiogenesis and healing. To this end, we first analyzed the in vitro kinetics of macrophage phenotype switch using flow cytometry, gene expression, and cytokine secretion analysis. Then, we designed scaffolds for bone regeneration based on modifications of decellularized bone for a short release of interferon-gamma (IFNg) to promote the M1 phenotype, followed by a more sustained release of interleukin-4 (IL4) to promote the M2 phenotype. To achieve this sequential release profile, IFNg was physically adsorbed onto the scaffolds, while IL4 was attached via biotin-streptavidin binding. Interestingly, despite the strong interactions between biotin and streptavidin, release studies showed that biotinylated IL4 was released over 6 days. These scaffolds promoted sequential M1 and M2 polarization of primary human macrophages as measured by gene expression of ten M1 and M2 markers and secretion of four cytokines, although the overlapping phases of IFNg and IL4 release tempered polarization to some extent. Murine subcutaneous implantation model showed increased vascularization in scaffolds releasing IFNg compared to controls. This study demonstrates that scaffolds for tissue engineering can be designed to harness the angiogenic behavior of host macrophages towards scaffold vascularization.
Nature 457, 863-867 (2009) This Letter presents the results of high-pressure experiments and ab initio evolutionary crystal structure predictions, and found a new boron phase that we named c-B 28 . This phase is comprised of icosahedral B 12 clusters and B 2 pairs in a NaCl-type arrangement, stable between 19 and 89 GPa, and exhibits evidence for charge transfer (for which our best estimate is d < 0.48) between the constituent clusters to give (B 2 ) d1 (B 12 ) d2 . We have recently found that the same highpressure boron phase may have given rise to the Bragg reflections reported by Wentorf in 1965 (ref. 1), although the chemical composition was not analysed and the data (subsequently deleted from the Powder Diffraction File database) seems to not have been used to propose a structure model. We also note that although we used the terms 'partially ionic' and 'ionic' to emphasize the polar nature of the high-pressure boron phase and the influence this polarity has on several physical properties of the elemental phase, the chemical bonding in c-B 28 is predominantly covalent.We acknowledge N. Dubrovinskaia, L. Dubrovinsky, E. Yu Zarechnaya, Y. Filinchuk, D. Chernyshov, V. Dmitriev, A. S. Mikhaylushkin, I. A. Abrikosov & S. I. Simak for drawing these issues to our attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.