The present study demonstrates that cardiovascular adaptations to training are intensity-dependent. A close correlation between VO2max, cardiomyocyte dimensions and contractile capacity suggests significantly higher benefit with high intensity, whereas endothelial function appears equivalent at moderate levels. Thus, exercise intensity emerges as an important variable in future preclinical and clinical investigations.
G protein-coupled receptor kinase-2 and -3 (GRK2 and GRK3) in cardiac myocytes catalyze phosphorylation and desensitization of different G protein-coupled receptors through specificity controlled by their carboxyl-terminal pleckstrin homology domain. Although GRK2 has been extensively investigated, the function of cardiac GRK3 remains unknown. Thus, in this study cardiac function of GRK3 was investigated in transgenic (Tg) mice with cardiac-restricted expression of a competitive inhibitor of GRK3, i.e. the carboxyl-terminal plasma membrane targeting domain of GRK3 (GRK3ct). Cardiac myocytes from Tg-GRK3ct mice displayed significantly enhanced agonist-stimulated ␣ 1 -adrenergic receptor-mediated activation of ERK1/2 versus cardiac myocytes from nontransgenic littermate control (NLC) mice consistent with inhibition of GRK3. Tg-GRK3ct mice did not display alterations of cardiac mass or left ventricular dimensions compared with NLC mice. Tail-cuff plethysmography of 3-and 9-month-old mice revealed elevated systolic blood pressure in Tg-GRK3ct mice versus control mice (3-month-old mice, 136.8 ؎ 3.6 versus 118.3 ؎ 4.7 mm Hg, p < 0.001), an observation confirmed by radiotelemetric recording of blood pressure of conscious, unrestrained mice. Simultaneous recording of left ventricular pressure and volume in vivo by miniaturized conductance micromanometry revealed increased systolic performance with significantly higher stroke volume and stroke work in Tg-GRK3ct mice than in NLC mice. This phenotype was corroborated in electrically paced ex vivo perfused working hearts. However, analysis of left ventricular function ex vivo as a function of increasing filling pressure disclosed significantly reduced (dP/dt) min and prolonged time constant of relaxation () in Tg-GRK3ct hearts at elevated supraphysiological filling pressure compared with control hearts. Thus, inhibition of GRK3 apparently reduces tolerance to elevation of preload. In conclusion, inhibition of cardiac GRK3 causes hypertension because of hyperkinetic myocardium and increased cardiac output relying at least partially on cardiac myocyte ␣ 1 -adrenergic receptor hyper-responsiveness. The reduced tolerance to elevation of preload may cause impaired ability to withstand pathophysiological mechanisms of heart failure.
Recently, we showed C-type natriuretic peptide (CNP)-induced negative inotropic (NIR) and positive lusitropic response (LR) in failing rat heart. We wanted to study whether, and if so, how phosphodiesterases (PDEs) regulate CNP-induced cyclic 3',5'-guanosine monophosphate (cGMP) elevation and functional responses. Inotropic and lusitropic responses were measured in left ventricular muscle strips and cyclic nucleotide levels, PDE activity and phospholamban (PLB) and troponin I (TnI) phosphorylation were measured in ventricular cardiomyocytes from Wistar rats with heart failure 6 weeks after myocardial infarction. CNP-mediated increase in global cGMP was mainly regulated by PDE2, as reflected by a marked amplification of the cGMP increase during PDE2 inhibition and by a high PDE2 activity in cardiomyocytes. PDE3 inhibition, on the other hand, caused no significant cGMP increase by CNP. The functional consequences did not correspond to the changes of cGMP. PDE3 inhibition increased the potency of the CNP-induced NIR and LR, while PDE2 inhibition desensitized the CNP-induced NIR, but not LR. A role for PDE2 on the maximal LR and PDE5 on the maximal NIR to CNP was revealed in the presence of PDE3 inhibition. CNP increased PLB phosphorylation about 25- to 30-fold and tended to increase TnI phosphorylation about twofold. As a whole, CNP-induced functional responses were only modestly regulated by PDEs compared to the cAMP-mediated functional responses to β1-adrenoceptor stimulation, which are highly regulated by PDEs. There is a mismatch between the CNP-induced cGMP increase and functional responses. Global cGMP levels are mainly regulated by PDE2 after CNP stimulation, whereas the functional responses are modestly regulated by both PDE2 and PDE3, indicating cGMP compartmentation by PDEs affecting CNP-induced responses in failing hearts.
The closely related G protein-coupled receptor kinases GRK2 and GRK3 are both expressed in cardiac myocytes. Although GRK2 has been extensively investigated in terms of regulation of cardiac -adrenergic receptors, the substrate specificities of the two GRK isoforms at G protein-coupled receptors (GPCR) are poorly understood. In this study, the substrate specificities of GRK2 and GRK3 at GPCRs that control cardiac myocyte function were determined in fully differentiated adult cardiac myocytes. Concentration-effect relationships of GRK2, GRK3, and their respective competitive inhibitors, GRK2ct and GRK3ct, at endogenous endothelin, ␣ 1 -adrenergic, and  1 -adrenergic receptor-generated responses in cardiac myocytes were achieved by adenovirus gene transduction. GRK3 and GRK3ct were highly potent and efficient at the endothelin receptors (IC 50 for GRK3, 5 Ϯ 0.7 pmol/mg of protein; EC 50 for GRK3ct, 2 Ϯ 0.2 pmol/mg of protein). The ␣ 1 -adrenergic receptor was also a preferred substrate of GRK3 (IC 50 , 7 Ϯ 0.4 pmol/mg of protein). GRK2 lacked efficacy at both endothelin and ␣ 1 -adrenergic receptors despite massive overexpression. On the contrary, both GRK2ct and GRK3ct enhanced  1 -adrenergic receptor-induced cAMP production with comparable potencies. However, the potency of GRK3ct at  1 -adrenergic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.