Fridovich identified CuZnSOD in 1969 and manganese superoxide dismutase (MnSOD) in 1973, and proposed ”the Superoxide Theory,” which postulates that superoxide (O2•−) is the origin of most reactive oxygen species (ROS) and that it undergoes a chain reaction in a cell, playing a central role in the ROS producing system. Increased oxidative stress on an organism causes damage to cells, the smallest constituent unit of an organism, which can lead to the onset of a variety of chronic diseases, such as Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis and other neurological diseases caused by abnormalities in biological defenses or increased intracellular reactive oxygen levels. Oxidative stress also plays a role in aging. Antioxidant systems, including non-enzyme low-molecular-weight antioxidants (such as, vitamins A, C and E, polyphenols, glutathione, and coenzyme Q10) and antioxidant enzymes, fight against oxidants in cells. Superoxide is considered to be a major factor in oxidant toxicity, and mitochondrial MnSOD enzymes constitute an essential defense against superoxide. Mitochondria are the major source of superoxide. The reaction of superoxide generated from mitochondria with nitric oxide is faster than SOD catalyzed reaction, and produces peroxynitrite. Thus, based on research conducted after Fridovich’s seminal studies, we now propose a modified superoxide theory; i.e., superoxide is the origin of reactive oxygen and nitrogen species (RONS) and, as such, causes various redox related diseases and aging.
5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), a new cyclic DEPMPO-type nitrone was evaluated for spin-trapping capabilities toward hydroxyl and superoxide radicals. CYPMPO is colorless crystalline and freely soluble in water. Both the solid and diluted aqueous solution did not develop electron spin resonance (ESR) signal for at least 1 month at ambient conditions. CYPMPO can spin-trap superoxide and hydroxyl radicals in both chemical and biological systems, and the ESR spectra are readily assignable. Half life for the superoxide adduct of CYPMPO produced in UV-illuminated hydrogen peroxide solution was approximately 15 min, and in biological systems such as hypoxanthine (HX)/xanthine oxidase (XOD) the half-life of the superoxide adduct was approximately 50 min. In UV-illuminated hydrogen peroxide solution, there was no conversion from the superoxide adduct to the hydroxyl adduct. Although overall spin-trapping capabilities of CYPMPO are similar to DEPMPO, its high melting point, low hygroscopic property, and the long shelf-life would be highly advantageous for the practical use.
The scavenging reaction of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH.) or galvinoxyl radical (GO.) by a vitamin E model, 2,2,5,7,8-pentamethylchroman-6-ol (1H), was significantly accelerated by the presence of Mg(ClO4)2 in de-aerated methanol (MeOH). Such an acceleration indicates that the radical-scavenging reaction of 1H in MeOH proceeds via an electron transfer from 1H to the radical, followed by a proton transfer, rather than the one-step hydrogen atom transfer which has been observed in acetonitrile (MeCN). A significant negative shift of the one-electron oxidation potential of 1H in MeOH (0.63 V vs. SCE), due to strong solvation as compared to that in MeCN (0.97 V vs. SCE), may result in change of the radical-scavenging mechanisms between protic and aprotic media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.