A coherent 2 microm differential absorption and wind lidar (Co2DiaWiL) was developed to measure CO(2) concentration and line-of-sight wind speed. We conductively cooled a pumping laser head to -80 degrees C and diode arrays to approximately 20 degrees C. A Q-switched laser outputs an energy of 80 mJ (pulse width 150 ns (FWHM), pulse repetition frequency up to 30 Hz). CO(2) measurements made over a column range (487-1986 m) for 5 min accumulation time pairs achieved 0.7% precision. Line-of-sight wind speeds for ranges up to approximately 20 km and returns from a mountainside located 24 km away from the Co2DiaWiL were obtained.
Abstract. Rayleigh lidar measurements of the stratosphere and mesosphere have been made on an ongoing basis over a threeyear period at Poker Flat, Alaska (65 ø N, 147 ø W). These observations have yielded 27 nightly measurements of the middle atmosphere temperature profile (-40-80 km). These nighttime measurements are distributed between August and April. Mesospheric inversion layers have been observed on five occasions. The average altitude of the inversion layer peak is 60 km, with average amplitude of 1õ K. The temperature gradients on the topside of the inversion layers approach the adiabatic lapse rate. The inversion layers do not exhibit the apparent downward phase velocities that are commonly observed at lower latitudes. Furthermore, the inversion layers appear significantly less frequently than at lower latitudes. The observations are discussed in terms of current models and observations at other sites.
Abstract. The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5 • N, 79.2 • E), India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.
We analyzed the time series data of dust vertical profiles, observed using polarization elastic lidar, from April 8 th -21 st , 2002, during the first intensive observation period of the Aeolian Dust Experiment on Climate impact (ADEC), in Shapotou, Ninxia Province in China. We conducted the analysis with consideration to the upper atmospheric soundings and surface weather data. The results are summarized as follows. 1) A well-mixed dust layer dominated in the boundary layer sampled from around 11 a.m. until around 1 or 2 a.m. local time (Beijing time). Under well-mixed conditions, the mixed layers grew well with dry convections in the boundary layer, especially during the day and in the early evening. 2) Dry convections developed deeper during synoptic low-pressure conditions because of the systematic upward motions prevalent in the low-pressure systems. Vertical wind shear affected growth of the mixed layer as well, that is, weak vertical wind shear condition was favorable for the growth of the mixed layer. The deepest mixed layer was observed on April 13 th at a thickness of about 6-km above ground, when the pressure was the lowest, the vertical wind shear was very weak, and the atmosphere was dry. The aspect ratios (horizontal/vertical scale ratios) of the convections decreased under low-pressure and weak-shear conditions. On the other hand, the aspect ratios of the convections increased dramatically under highpressure and strong-shear conditions, because convection growth was suppressed by systematic downdrafts of the high-pressure system and by strong vertical wind shears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.