We conclude that the membrane-bound protein is osteoclast differentiation factor (ODF), a long-sought ligand mediating an essential signal to osteoclast progenitors for their differentiation into osteoclasts. ODF was found to be identical to TRANCE͞RANKL, which enhances T-cell growth and dendritic-cell function. ODF seems to be an important regulator in not only osteoclastogenesis but also immune system.
The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche. The interaction of Tie2 with its ligand Angiopoietin-1 (Ang-1) induced cobblestone formation of HSCs in vitro and maintained in vivo long-term repopulating activity of HSCs. Furthermore, Ang-1 enhanced the ability of HSCs to become quiescent and induced adhesion to bone, resulting in protection of the HSC compartment from myelosuppressive stress. These data suggest that the Tie2/Ang-1 signaling pathway plays a critical role in the maintenance of HSCs in a quiescent state in the BM niche.
Bone-resorbing osteoclasts are of hemopoietic cell origin, probably of the CFU-M-derived monocytemacrophage family (1). Osteoclasts are large multinucleated giant cells that express tartrate-resistant acid phosphatase (TRAP) activity and calcitonin receptors and have the ability to form resorption pits on dentine slices (2-4). In the process of osteoclast differentiation, there is an absolute requirement for cell-cell contact between osteoclast progenitors and bone marrow stromal cells or calvaria-derived osteoblasts (5-8).We developed a mouse coculture system of hemopoietic cells and primary osteoblasts to investigate osteoclast formation in vitro. In this coculture system, several systemic and local factors were capable of inducing osteoclast-like multinucleated cell (OCL) formation (6-9). These boneresorbing factors were classified into 3 categories according to their signal transduction pathways: (a) 1α,25-dihydroxyvitamin D 3 [1α,25(OH) 2 D 3 ] induced OCL formation via 1α,25(OH) 2 D 3 receptors (VDR) present in the nuclei; (b) parathyroid hormone (PTH), PTH-related protein (PTHrP), prostaglandin E 2 (PGE 2 ), and IL-1 induced OCL formation via the A kinase system; and (c) IL-11, oncostatin M, leukemia inhibitory factor, and IL-6 in the presence of soluble IL-6 receptors, all of which transduce their signals through a signal-transducing gp130 protein, also induced OCL formation in vitro. We reported previously that the target cells of IL-6 are osteoblasts/stromal cells but that they are not osteoclast precursors in inducing osteoclast differentiation (10). Similarly, coculture experiments using VDR knockout mice and PTH/PTHrP receptor knockout mice have indicated that the signals mediated by 1α,25(OH) 2 D 3 and PTH, respectively, are also transduced into osteoblasts/stromal cells, but not into osteoclast precursors, to induce osteoclast formation (11,12). Thus, it is concluded that the signals induced by all bone-resorbing factors are transduced into osteo-blasts/stromal cells to induce osteoclast formation. Our hypothesis proposes that osteoblasts/stromal cells express a critical common mediator named osteoclast differentiation factor (ODF), a membrane-bound factor that promotes differentiation of osteoclast progenitors into osteoclasts in response to various bone-resorbing factors through a mechanism involving cell-cell contact (6, 8). IL-17 is a newly discovered T cell-derived cytokine whose role in osteoclast development has not been fully elucidated. Treatment of cocultures of mouse hemopoietic cells and primary osteoblasts with recombinant human IL-17 induced the formation of multinucleated cells, which satisfied major criteria of osteoclasts, including tartrate-resistant acid phosphatase activity, calcitonin receptors, and pit formation on dentine slices. Direct interaction between osteoclast progenitors and osteoblasts was required for IL-17-induced osteoclastogenesis, which was completely inhibited by adding indomethacin or NS398, a selective inhibitor of cyclooxgenase-2 (COX-2). Adding IL-17 incre...
Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm(-/-) mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS-p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.