Group II metabotropic glutamate receptors (mGluRs) comprise mGluR2 (mGlu2; encoded by GRM2) and mGluR3 (mGlu3; encoded by GRM3) and modulate glutamate neurotransmission and synaptic plasticity. Here we review the expression and function of mGluR3 and its involvement in schizophrenia. mGluR3 is expressed by glia and neurons in many brain regions and has a predominantly presynaptic distribution, consistent with its role as an inhibitory autoreceptor and heteroceptor. mGluR3 splice variants exist in human brain but are of unknown function. Differentiation of mGluR3 from mGluR2 has been problematic because of the lack of selective ligands and antibodies; the available data suggest particular roles for mGluR3 in long-term depression, in glial function and in neuroprotection. Some but not all studies find genetic association of GRM3 polymorphisms with psychosis, with the risk alleles also being associated with schizophrenia-related endophenotypes such as impaired cognition, cortical activation and glutamate markers. The dimeric form of mGluR3 may be reduced in the brain in schizophrenia. Finally, preclinical findings have made mGluR3 a putative therapeutic target, and now direct evidence for antipsychotic efficacy of a group II mGluR agonist has emerged from a randomised clinical trial in schizophrenia. Together these data implicate mGluR3 in aetiological, pathophysiological and pharmacotherapeutic aspects of the disorder.
Visualizing the proliferation marker bromodeoxyuridine (BrdU) requires pretreatment of tissue, typically with dilute hydrochloric acid (HCl). We report here that pretreatment by steam heating of paraformaldehyde-fixed tissue sections covered with citrate buffer yields much brighter labeling of BrdU than HCl pretreatment, allows labeling with many antibodies greatly superior to HCl pretreatment, and allows concurrent high-quality labeling of nuclei with the DNA-binding dyes Hoechst, DAPI (4Ј,6-diamidino-2-phenylindole), and Syto24. Standard use of antigen retrieval by steamer can facilitate new insights into mechanisms regulating normal progenitor and tumor cell proliferation and novel understandings of protein expression through increased sensitivity of immunohistochemical analysis.
Importance The single-nucleotide polymorphism rs1344706 in the zinc finger protein 804A gene (ZNF804A) shows genome-wide association with schizophrenia and bipolar disorder. Little is known regarding the expression of ZNF804A and the functionality of rs1344706. Objectives To characterize ZNF804A expression in human brain and to investigate how it changes across the life span and how it is affected by rs1344706, schizophrenia, bipolar disorder, and major depressive disorder. Design, Setting, and Participants Molecular and immunochemical methods were used to study ZNF804A messenger RNA (mRNA) and ZNF804A protein, respectively. ZNF804A transcripts were investigated using next-generation sequencing and polymerase chain reaction–based methods, and ZNF804A protein was investigated using Western blots and immunohistochemistry. Samples of dorsolateral prefrontal cortex and inferior parietal lobe tissue were interrogated from 697 participants between 14 weeks’ gestational age and age 85 years, including patients with schizophrenia, bipolar disorder, or major depressive disorder. Main Outcomes and Measures Quantitative measurements of ZNF804A mRNA and immunoreactivity, and the effect of diagnosis and rs1344706 genotype. Results ZNF804A was expressed across the life span, with highest expression prenatally. An abundant and developmentally regulated truncated ZNF804A transcript was identified, missing exons 1 and 2 (ZNF804AE3E4) and predicted to encode a protein lacking the zinc finger domain. rs1344706 influenced expression of ZNF804AE3E4 mRNA in fetal brain (P = .02). In contrast, full-length ZNF804A showed no association with genotype (P > .05). ZNF804AE3E4 mRNA expression was decreased in patients with schizophrenia (P = .006) and increased in those with major depressive disorder (P < .001), and there was a genotype-by-diagnosis interaction in bipolar disorder (P = .002). ZNF804A immunoreactivity was detected in fetal and adult human cerebral cortex. It was localized primarily to pyramidal neurons, with cytoplasmic as well as dendritic and nuclear staining. No differences in ZNF804A-immunoreactive neurons were seen in schizophrenia or related to rs1344706 (P > .05). Conclusions and Relevance rs1344706 influences the expression of ZNF804AE3E4, a novel splice variant. The effect is limited to fetal brain and to this isoform. It may be part of the mechanism by which allelic variation in ZNF804A affects risk of psychosis. ZNF804A is translated in human brain, where its functions may extend beyond its predicted role as a transcription factor.
Group II metabotropic glutamate receptors (mGluR2 and mGluR3, encoded by GRM2 and GRM3) are implicated in hippocampal function and cognition, and in the pathophysiology and treatment of schizophrenia and other psychiatric disorders. However, pharmacological and behavioral studies with group II mGluR agonists and antagonists have produced complex results. Here, we studied hippocampus-dependent memory in GRM2/3 double knockout (GRM2/3−/−) mice in an iterative sequence of experiments. We found that they were impaired on appetitively motivated spatial reference and working memory tasks, and on a spatial novelty preference task that relies on animals' exploratory drive, but were unimpaired on aversively motivated spatial memory paradigms. GRM2/3−/− mice also performed normally on an appetitively motivated, non-spatial, visual discrimination task. These results likely reflect an interaction between GRM2/3 genotype and the arousal-inducing properties of the experimental paradigm. The deficit seen on appetitive and exploratory spatial memory tasks may be absent in aversive tasks because the latter induce higher levels of arousal, which rescue spatial learning. Consistent with an altered arousal–cognition relationship in GRM2/3−/− mice, injection stress worsened appetitively motivated, spatial working memory in wild-types, but enhanced performance in GRM2/3−/− mice. GRM2/3−/− mice were also hypoactive in response to amphetamine. This fractionation of hippocampus-dependent memory depending on the appetitive-aversive context is to our knowledge unique, and suggests a role for group II mGluRs at the interface of arousal and cognition. These arousal-dependent effects may explain apparently conflicting data from previous studies, and have translational relevance for the involvement of these receptors in schizophrenia and other disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.