Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twentyfive cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter-and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.cancer | head and neck | papilloma virus | genome rearrangement | integration sites H ead and neck cancer (HNC) is a heterogeneous group of tumors characterized by a common anatomic origin, and most such tumors develop from within the mucosa and are classified as head and neck squamous cell carcinomas (HNSCCs) (1). HNSCC, the sixth most common cancer diagnosed worldwide and the eighth most common cause of cancer death (2), is frequently associated with human papillomavirus (HPV) infection (3, 4). Depending on the anatomic site of the tumor, HPV prevalence is estimated at 23-36% (5). HPV-positive HNSCCs form a distinct subset of HNCs that differs from HPV-negative HNSCCs in tumor biology and clinical characteristics, including superior clinical outcomes (6-9).The molecular pathogenesis of HPV-driven HNSCC also seems distinct from HPV-negative tumors, with previous studies showing a divergent spectrum of alterations in gene expression, mutations, amplifications, and deletions as well as distinct epigenome alterations (10-15). HPV is known to drive tumorigenesis through the actions of its major oncoproteins E6 and E7, which target numerous cellular pathways, including inactivation of p53 and the retinoblastoma (Rb) protein (16-18). Together with E5, they also play an important role in immune evasion, being involved in both innate and adaptive immunity (19,20).Initially after infection, HPV is identified in circular extrachromosomal particles or episomes. A critical step in progression to cancer is the integration of viral DNA into the host cell Significance A significant proportion of head and neck cancer is driven by human papil...
OTSCC is increasing among young white individuals age 18 to 44 years, particularly among white women. Young white women may be a new, emerging head and neck cancer patient population.
Head and neck squamous cell carcinoma (HNSCC) is a frequently fatal heterogeneous disease. Beyond the role of human papilloma virus (HPV), no validated molecular characterization of the disease has been established. Using an integrated genomic analysis and validation methodology we confirm four molecular classes of HNSCC (basal, mesenchymal, atypical, and classical) consistent with signatures established for squamous carcinoma of the lung, including deregulation of the KEAP1/NFE2L2 oxidative stress pathway, differential utilization of the lineage markers SOX2 and TP63, and preference for the oncogenes PIK3CA and EGFR. For potential clinical use the signatures are complimentary to classification by HPV infection status as well as the putative high risk marker CCND1 copy number gain. A molecular etiology for the subtypes is suggested by statistically significant chromosomal gains and losses and differential cell of origin expression patterns. Model systems representative of each of the four subtypes are also presented.
Purpose: To identify a profile of circulating tumor human papilloma virus (HPV) DNA (ctHPVDNA) clearance kinetics that is associated with disease control after chemoradiotherapy (CRT) for HPV-associated oropharyngeal squamous cell carcinoma (OPSCC). Experimental Design: A multi-institutional prospective biomarker trial was conducted in 103 patients with (i) p16positive OPSCC, (ii) M0 disease, and (iii) receipt of definitive CRT. Blood specimens were collected at baseline, weekly during CRT, and at follow-up visits. Optimized multianalyte digital PCR assays were used to quantify ctHPVDNA (types 16/18/31/33/35) in plasma. A control cohort of 55 healthy volunteers and 60 patients with non-HPV-associated malignancy was also analyzed. Results: Baseline plasma ctHPVDNA had high specificity (97%) and high sensitivity (89%) for detecting newly diagnosed HPV-associated OPSCC. Pretreatment ctHPV16DNA copy number correlated with disease burden, tumor HPV copy number, and HPV integration status. We define a ctHPV16DNA favorable clearance profile as having high baseline copy number (>200 copies/mL) and >95% clearance of ctHPV16DNA by day 28 of CRT. Nineteen of 67 evaluable patients had a ctHPV16DNA favorable clearance profile, and none had persistent or recurrent regional disease after CRT. In contrast, patients with adverse clinical risk factors (T4 or >10 pack years) and an unfavorable ctHPV16DNA clearance profile had a 35% actuarial rate of persistent or recurrent regional disease after CRT (P ¼ 0.0049). Conclusions: A rapid clearance profile of ctHPVDNA may predict likelihood of disease control in patients with HPVassociated OPSCC patients treated with definitive CRT and may be useful in selecting patients for deintensified therapy.
PURPOSE Plasma circulating tumor human papillomavirus DNA (ctHPVDNA) is a sensitive and specific biomarker of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC). We investigated whether longitudinal monitoring of ctHPVDNA during post-treatment surveillance could accurately detect clinical disease recurrence. METHODS AND MATERIALS A prospective biomarker clinical trial was conducted among patients with nonmetastatic HPV-associated (p16-positive) OPSCC. All patients were treated with curative-intent chemoradiotherapy (CRT). Patients underwent a 3-month post-CRT positron emission tomography/computed tomography scan and were thereafter clinically evaluated every 2-4 months (years 1-2), then every 6 months (years 3-5). Chest imaging was performed every 6 months. Blood specimens were collected every 6-9 months for analysis of plasma ctHPVDNA using a multianalyte digital polymerase chain reaction assay. The primary endpoint was to estimate the negative predictive value (NPV) and positive predictive value (PPV) of ctHPVDNA surveillance. RESULTS One hundred fifteen patients were enrolled, and 1,006 blood samples were analyzed. After a median follow-up time of 23 months (range, 6.1-54.7 months), 15 patients (13%) developed disease recurrence. Eighty-seven patients had undetectable ctHPVDNA at all post-treatment time points, and none developed recurrence (NPV, 100%; 95% CI, 96% to 100%). Twenty-eight patients developed a positive ctHPVDNA during post-treatment surveillance, 15 of whom were diagnosed with biopsy-proven recurrence. Sixteen patients had 2 consecutively positive ctHPVDNA blood tests, 15 of whom developed biopsy-proven recurrence. Two consecutively positive ctHPVDNA blood tests had a PPV of 94% (95% CI, 70% to 99%). Median lead time between ctHPVDNA positivity and biopsy-proven recurrence was 3.9 months (range, 0.37-12.9 months). CONCLUSION Detection of ctHPVDNA in two consecutive plasma samples during post-treatment surveillance has high PPV and NPV for identifying disease recurrence in patients with HPV-associated oropharyngeal cancer and may facilitate earlier initiation of salvage therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.