Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.[The Cytoscape v1.1 Core runs on all major operating systems and is freely available for download from http://www.cytoscape.org/ as an open source Java application.] Such models promise to transform biological research by providing a framework to (1) systematically interrogate and experimentally verify knowledge of a pathway; (2) manage the immense complexity of hundreds or potentially thousands of cellular components and interactions; and (3) reveal emergent properties and unanticipated consequences of different pathway configurations.Typically, models are directed toward a cellular process or disease pathway of interest (Gilman and Arkin 2002) and are built by formulating existing literature as a system of differential and/or stochastic equations. However, pathway-specific models are now being supplemented with global data gathered for an entire cell or organism, by use of two complementary approaches. First, recent technological developments have made it feasible to measure pathway structure systematically, using highthroughput screens for protein-protein (Ito et al. 2001;von Mering et al. 2002), protein-DNA (Lee et al. 2002, and genetic interactions (Tong et al. 2001). To complement these data, a second set of high-throughput methods are available to characterize the molecular and cellular states induced by pathway interactions under different experimental conditions. For instance, global changes in gene expression are measured with DNA microarrays (DeRisi et al. 1997), whereas changes in protein abundance (Gygi et al. 1999), protein phosphorylation state (Zhou et al. 2001), and metabolite concentrations (Griffin et al. 2001) may be quantified with mass spectrometry, NMR, and other advanced techniques. High-throughput data pertaining to molecular interactions and states are well matched, in...
The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Summary The ability to measure human aging from molecular profiles has practical implications in many fields, including disease prevention and treatment, forensics, and extension of life. Although chronological age has been linked to changes in DNA methylation, the methylome has not yet been used to measure and compare human aging rates. Here, we build a quantitative model of aging using measurements at more than 450,000 CpG markers from the whole blood of 656 human individuals, aged 19 to 101. This model measures the rate at which an individual’s methylome ages, which we show is impacted by gender and genetic variants. Furthermore, we show that differences in aging rates help explain epigenetic drift and are reflected in the transcriptome. Our model highlights specific components of the aging process and provides a quantitative read-out for studying the role of methylation in age-related disease.
Summary: Cytoscape is a popular bioinformatics package for biological network visualization and data integration. Version 2.8 introduces two powerful new features—Custom Node Graphics and Attribute Equations—which can be used jointly to greatly enhance Cytoscape's data integration and visualization capabilities. Custom Node Graphics allow an image to be projected onto a node, including images generated dynamically or at remote locations. Attribute Equations provide Cytoscape with spreadsheet-like functionality in which the value of an attribute is computed dynamically as a function of other attributes and network properties.Availability and implementation: Cytoscape is a desktop Java application released under the Library Gnu Public License (LGPL). Binary install bundles and source code for Cytoscape 2.8 are available for download from http://cytoscape.org.Contact: msmoot@ucsd.edu
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.