The sequestration of neutrophils in the lung and the release of proinflammatory mediators, including neutrophil elastase, are responsible for sepsis-induced microvascular permeability and alveolar epithelial cell damage. To assess the underlying mechanism, human neutrophil elastase (0.01-0.5 microg/ml) was added to cultured A549 epithelial cells in the presence or absence of inhibitors. IL-8 was analyzed by ELISA or by RT-PCR to measure the IL-8 synthesis capacity. Mitogen-activated protein kinase (MAPK) activity was detected by Western blot analysis. Neutrophil elastase dose-dependently increased IL-8 release from cultured A549 epithelial cells. Pretreatment with a specific elastase inhibitor, elastase inhibitor II (at 0.5, 5, and 50 microg/ml), dose-dependently inhibited neutrophil elastase-induced IL-8 release. The activities of MAPK, p38, and extracellular signal-regulated kinase (ERK) were upregulated by neutrophil elastase. Nuclear transcriptional factor-kappa B (NF-kappaB) and activator protein 1 (AP-1) were also activated. These responses were significantly inhibited by elastase inhibitor II. A specific inhibitor of p38 MAPK (SB203580) and an NF-kappaB inhibitor (pyrrolidine dithiocarbamate), but not an ERK inhibitor (PD 98059), significantly inhibited neutrophil elastase-induced IL-8 release and mRNA expression. The specific tyrosine kinase inhibitor, genistein, and the protein kinase C (PKC) inhibitor, Ro 31-8220, also inhibited IL-8 release and mRNA expression as well as p38 and NF-kappaB activation. There was no significant effect by the protein kinase A inhibitor, H-89, on neutrophil elastase-induced IL-8 synthesis or p38 MAPK activation. Our results indicate that neutrophil elastase activates p38 MAPK which upregulates NF-kappaB and AP-1 activities, thus inducing IL-8 mRNA expression and protein synthesis. Tyrosine kinase and PKC are implicated in neutrophil elastase activation of the MAPK pathway.
Infection-induced chronic inflammation is common in patients with endometriosis. Although microbial communities in the reproductive tracts of patients have been reported, little was known about their dynamic profiles during disease progression and complication development. Microbial communities in cervical mucus were collected by cervical swabs from 10 healthy women and 23 patients, and analyzed by 16S rRNA amplicon sequencing. The abundance, ecological relationships and functional networks of microbiota were characterized according to their prevalence, clinical stages, and clinical features including deeply infiltrating endometriosis (DIE), CA125, pain score and infertility. Cervical microbiome can be altered during endometriosis development and progression with a tendency of increased Firmicutes and decreased Actinobacteria and Bacteroidetes. Distinct from vaginal microbiome, upregulation of Lactobacillus, in combination with increased Streptococcus and decreased Dialister, was frequently associated with advanced endometriosis stages, DIE, higher CA125 levels, severe pain, and infertility. Significantly, reduced richness and diversity of cervical microbiome were detected in patients with more severe clinical symptoms. Clinical treatments against infertility can partially reverse the ecological balance of microbes through remodeling nutrition metabolism and transport and cell-cell/cell-matrix interaction. This study provides a new understanding on endometriosis development and a more diverse cervical microbiome may be beneficial for patients to have better clinical outcomes.
Aberrant miRNA expression has been reported in endometriosis and miRNA gene polymorphisms have been linked to cancer. Because certain ovarian cancers arise from endometriosis, we genotyped seven cancer-related miRNA single nucleotide polymorphisms (MiRSNPs) to investigate their possible roles in endometriosis. Genetic variants in MIR196A2 (rs11614913) and MIR100 (rs1834306) were found to be associated with endometriosis development and related clinical phenotypes, such as infertility and pain. Downstream analysis of the MIR196A2 risk allele revealed upregulation of rRNA editing and protein synthesis genes, suggesting hyper-activation of ribosome biogenesis as a driving force for endometriosis progression. Clinical studies confirmed higher levels of small nucleolar RNAs and ribosomal proteins in atypical endometriosis lesions, and this was more pronounced in the associated ovarian clear cell carcinomas. Treating ovarian clear cells with CX5461, an RNA polymerase I inhibitor, suppressed cell growth and mobility followed by cell cycle arrest at G2/M stage and apoptosis. Our study thus uncovered a novel tumorigenesis pathway triggered by the cancer-related MIR196A2 risk allele during endometriosis development and progression. We suggest that anti-RNA polymerase I therapy may be efficacious for treating endometriosis and associated malignancies.
The mechanisms of neuronal degeneration following hypoxia/ischemia remain undefined, but the processes include increases in neurotransmitter release, elevation of cytosolic-free calcium concentration, and changes in signal transduction pathways. Activation of the multigene family of protein kinase C (PKC) has been associated with the release of neurotransmitter and the survival of neurons. Therefore, to understand which PKC isozymes are involved in hypoxia/ischemia-induced neuronal degeneration, we examined PKC isozymes after chemical hypoxia (i.e., KCN exposure) in PC12 cells. Cell toxicity, as measured by lactate dehydrogenase (LDH) release, was increased significantly by KCN in glucose-free DMEM and was exaggerated by acute 12-O-tetradecanoyl phorbol-13-acetate (TPA) pretreatment. Under parallel conditions, KCN elevated cytosolic-free calcium ([Ca2+]i) in glucose-free but not in glucose containing DMEM, and TPA pretreatment did not exaggerate KCN's effect on [Ca2+]i. Thus, increases in [Ca2+]i are not sufficient for the synergistic toxic effect of KCN and TPA. In the glucose-free DMEM, selective PKC isozyme inhibitor Go 6976 at 10 nM completely inhibited KCN-induced LDH release and at higher concentrations (1 microM) inhibited the basal levels of LDH release. The protein levels of PKCs in the nuclear, membrane, and cytosolic fractions were measured by Western blot analysis using antibodies against specific isoforms. Two Ca2+-dependent (-alpha, -gamma) and four Ca2+-independent (-delta, -epsilon, -zeta, and -lambda) isozymes were identified and two isozymes (-beta and -theta) were not detected in the subcellular fractions of PC12 cells. Treatment of the cells with TPA significantly activated translocation of conventional PKC-gamma from the cytosol to the membrane and nuclear fractions and other PKC isozymes (-alpha, -delta, and -epsilon) from the cytosol to the membrane, but not atypical PKC-zeta and -lambda. Although only the levels in the nuclear PKC-gamma but not other PKC isozymes were increased significantly following KCN, the levels of cPKC-alpha and -gamma in the membrane mainly- and those and PKC-epsilon in the nucleus-were increased when KCN was combined with TPA. In addition, this condition (TPA + KCN) did not affect the TPA insensitive atypical isozymes, PKC-zeta or -lambda. Taking the results together, differential activation/translocation of PKC isozymes by KCN and TPA is important in the regulation of chemical hypoxia-induced cell injury in PC12 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.