In ac omparative study of the electrocatalytic CO 2 reduction, cobalt meso-tetraphenylporphyrin(CoTPP) is used as am odel molecular catalyst under both homogeneous and heterogeneous conditions.Inthe former case,employing N,Ndimethylformamide as solvent, CoTPP performs poorly as an electrocatalyst giving low product selectivity in aslow reaction at ah igh overpotential. However,u pon straightforward immobilization of CoTPP onto carbon nanotubes,aremarkable enhancement of the electrocatalytic abilities is seen with CO 2 becoming selectively reduced to CO (> 90 %) at al ow overpotential in aqueous medium. This effect is ascribed to the particular environment created by the aqueous medium at the catalytic site of the immobilized catalyst that facilitates the adsorption and further reaction of CO 2 .T his work highlights the significance of assessing an immobilized molecular catalyst from more than homogeneous measurements alone.
Earth-abundant
transition metal (Fe, Co, or Ni) and nitrogen-doped
porous carbon electrocatalysts (M-N-C, where M denotes the metal)
were synthesized from cheap precursors via silica-templated pyrolysis.
The effect of the material composition and structure (i.e., porosity,
nitrogen doping, metal identity, and oxygen functionalization) on
the activity for the electrochemical CO2 reduction reaction
(CO2RR) was investigated. The metal-free N-C exhibits a
high selectivity but low activity for CO2RR. Incorporation
of the Fe and Ni, but not Co, sites in the N-C material is able to
significantly enhance the activity. The general selectivity order
for CO2-to-CO conversion in water is found to be Ni >
Fe
≫ Co with respect to the metal in M-N-C, while the activity
follows Ni, Fe ≫ Co. Notably, the Ni-doped carbon exhibits
a high selectivity with a faradaic efficiency of 93% for CO production.
Tafel analysis shows a change of the rate-determining step as the
metal overtakes the role of the nitrogen as the most active site.
Recording the X-ray photoelectron spectra and extended X-ray absorption
fine structure demonstrates that the metals are atomically dispersed
in the carbon matrix, most likely coordinated to four nitrogen atoms
and with carbon atoms serving as a second coordination shell. Presumably,
the carbon atoms in the second coordination shell of the metal sites
in M-N-C significantly affect the CO2RR activity because
the opposite reactivity order is found for carbon supported metal
meso-tetraphenylporphyrin complexes. From a better understanding of
the relationship between the CO2RR activity and the material
structure, it becomes possible to rationally design high-performance
porous carbon electrocatalysts involving earth-abundant metals for
CO2 valorization.
A new technique for the ex situ generation of carbon monoxide (CO) and its efficient incorporation in palladium catalyzed carbonylation reactions was achieved using a simple sealed two-chamber system. The ex situ generation of CO was derived by a palladium catalyzed decarbonylation of tertiary acid chlorides using a catalyst originating from Pd(dba)(2) and P(tBu)(3). Preliminary studies using pivaloyl chloride as the CO-precursor provided an alternative approach for the aminocarbonylation of 2-pyridyl tosylate derivatives using only 1.5 equiv of CO. Further design of the acid chloride CO-precursor led to the development of a new solid, stable, and easy to handle source of CO for chemical transformations. The synthesis of this CO-precursor also provided an entry point for the late installment of an isotopically carbon-labeled acid chloride for the subsequent release of gaseous [(13)C]CO. In combination with studies aimed toward application of CO as the limiting reagent, this method provided highly efficient palladium catalyzed aminocarbonylations with CO-incorporations up to 96%. The ex situ generated CO and the two-chamber system were tested in the synthesis of several compounds of pharmaceutical interest and all of them were labeled as their [(13)C]carbonyl counterparts in good to excellent yields based on limiting CO. Finally, palladium catalyzed decarbonylation at room temperature also allowed for a successful double carbonylation. This new protocol provides a facile and clean source of gaseous CO, which is safely handled and stored. Furthermore, since the CO is generated ex situ, excellent functional group tolerance is secured in the carbonylation chamber. Finally, CO is only generated and released in minute amounts, hence, eliminating the need for specialized equipment such as CO-detectors and equipment for running high pressure reactions.
Electrocatalysis
is a promising tool for utilizing carbon dioxide
as a feedstock in the chemical industry. However, controlling the
selectivity for different CO2 reduction products remains
a major challenge. We report a series of manganese carbonyl complexes
with elaborated bipyridine or phenanthroline ligands that can reduce
CO2 to either formic acid, if the ligand structure contains
strategically positioned tertiary amines, or CO, if the amine groups
are absent in the ligand or are placed far from the metal center.
The amine-modified complexes are benchmarked to be among the most
active catalysts for reducing CO2 to formic acid, with
a maximum turnover frequency of up to 5500 s–1 at
an overpotential of 630 mV. The conversion even works at overpotentials
as low as 300 mV, although through an alternative mechanism. Mechanistically,
the formation of a Mn–hydride species aided by in situ protonated
amine groups was determined to be a key intermediate by cyclic voltammetry, 1H NMR, DFT calculations, and infrared spectroelectrochemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.