This Guidance describes a two-phase approach for a fit-for-purpose method for the assessment of plant pest risk in the territory of the EU. Phase one consists of pest categorisation to determine whether the pest has the characteristics of a quarantine pest or those of a regulated non-quarantine pest for the area of the EU. Phase two consists of pest risk assessment, which may be requested by the risk managers following the pest categorisation results. This Guidance provides a template for pest categorisation and describes in detail the use of modelling and expert knowledge elicitation to conduct a pest risk assessment. The Guidance provides support and a framework for assessors to provide quantitative estimates, together with associated uncertainties, regarding the entry, establishment, spread and impact of plant pests in the EU. The Guidance allows the effectiveness of risk reducing options (RROs) to be quantitatively assessed as an integral part of the assessment framework. A list of RROs is provided. A two-tiered approach is proposed for the use of expert knowledge elicitation and modelling. Depending on data and resources available and the needs of risk managers, pest entry, establishment, spread and impact steps may be assessed directly, using weight of evidence and quantitative expert judgement (first tier), or they may be elaborated in substeps using quantitative models (second tier). An example of an application of the first tier approach is provided. Guidance is provided on how to derive models of appropriate complexity to conduct a second tier assessment. Each assessment is operationalised using Monte Carlo simulations that can compare scenarios for relevant factors, e.g. with or without RROs. This document provides guidance on how to compare scenarios to draw conclusions on the magnitude of pest risks and the effectiveness of RROs and on how to communicate assessment results.
Following a request from the European Commission, the EFSA Plant Health Panel updated its pest categorisation of Xylella fastidiosa, previously delivered as part of the pest risk assessment published in 2015. X. fastidiosa is a Gram‐negative bacterium, responsible for various plant diseases, including Pierce's disease, phony peach disease, citrus variegated chlorosis, olive quick decline syndrome, almond leaf scorch and various other leaf scorch diseases. The pathogen is endemic in the Americas and is present in Iran. In the EU, it is reported in southern Apulia in Italy, on the island of Corsica and in the Provence‐Alpes‐Côte d'Azur region in France, as well as in the Autonomous region of Madrid, the province of Alicante and the Balearic Islands in Spain. The reported status is ‘transient, under eradication’, except for the Balearic Islands, Corsica and southern of Apulia, where the status is ‘present with a restricted distribution, under containment’. The pathogen is regulated under Council Directive 2000/29/EC and through emergency measures under http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015D0789 (as amended http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017D2352). The pest could enter the EU via host plants for planting and via infectious insect vectors. The host range includes hundreds of host species listed in the EFSA host plant database. In the EU, host plants are widely distributed and climatic conditions are favourable for its establishment. X. fastidiosa can spread by movement of host plants for planting and infectious insect vectors. X. fastidiosa is known to cause severe direct damage to major crops including almonds, citrus, grapevines, olives, stone fruits and also forest trees, landscape and ornamental trees, with high impacts. The criteria assessed by the Panel for consideration as a potential Union quarantine pest are met (the pathogen is present in the EU, but it has a restricted distribution and is under official control). X. fastidiosa is not considered as a regulated non‐quarantine pest (RNQP) as the pathogen may spread also via insect vector transmission.
Masting of rowan Sorbus aucuparia L. has been studied in 45 sites in southern Norway for 22 years. We present data on the year‐to‐year variation in fruit setting of rowan, and show that masting is spatially synchronous in Norway and probably all over Fennoscandia. The apple fruit moth Argyresthia conjugella Zeller is an important seed predator on rowan. We present data on the abundance of apple fruit moth in rowanberries during these years and discuss the consequences of masting and intermasting of rowan for apple fruit moth as a pest of apple. We conclude that growth and climate have little impact on flowering intensity and suggest that masting of rowan is an adaptive defense against seed predation and a new example of predator satiation: intermast years inhibit predators and prepare the rowan for the subsequent mast.
Cyclic outbreaks of forest moth pest species have long remained a puzzle for foresters and ecologists. This paper presents time-series exhibiting a strong negative relationship between sunspot numbers and population indices of autumnal and winter moths, both in a mountain birch forest in central Norway and in a mixed lowland forest in southern Norway. In the latter area, also the population level of a moth species feeding entirely on lichens was negatively related to sunspot numbers. Low sunspot activity leads to a thinner ozone layer and thus higher surface ultraviolet (UV)-B radiation. As winter moth larvae prefer leaves subjected to enhanced UV-B radiation, we suggest that the causal relationship between sunspots and moths is that the metabolic costs of producing UV-B-protective pigments during periods of low sunspot activity reduce trees' and lichens' resistance to herbivores, and thus increase the survival of moth larvae. Higher peak densities of moth cycles in mountain forests could be explained by the general higher UV-B radiation at higher altitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.