Background: Saline-alkaline stress is a major abiotic stress that is harmful to plant growth worldwide. Two peach cultivars (GF677 and Maotao) display distinct phenotypes under saline-alkaline stress. The molecular mechanism explaining the differences between the two cultivars is still unclear. Results: In the present study, we systematically analysed the changes in GF677 and Maotao leaves upon salinealkaline stress by using cytological and biochemical technologies as well as comparative transcriptome analysis. Transmission electron microscopy (TEM) observations showed that the structure of granum was dispersive in Maotao chloroplasts. The biochemical analysis revealed that POD activity and the contents of chlorophyll a and chlorophyll b, as well as iron, were notably decreased in Maotao. Comparative transcriptome analysis detected 881 genes with differential expression (including 294 upregulated and 587 downregulated) under the criteria of |log2 Ratio| ≥ 1 and FDR ≤0.01. Gene ontology (GO) analysis showed that all differentially expressed genes (DEGs) were grouped into 30 groups. MapMan annotation of DEGs showed that photosynthesis, antioxidation, ion metabolism, and WRKY TF were activated in GF677, while cell wall degradation, secondary metabolism, starch degradation, MYB TF, and bHLH TF were activated in Maotao. Several iron and stress-related TFs (ppa024966m, ppa010295m, ppa0271826m, ppa002645m, ppa010846m, ppa009439m, ppa008846m, and ppa007708m) were further discussed from a functional perspective based on the phylogenetic tree integration of other species homologues. Conclusions: According to the cytological and molecular differences between the two cultivars, we suggest that the integrity of chloroplast structure and the activation of photosynthesis as well as stress-related genes are crucial for saline-alkaline resistance in GF677. The results presented in this report provide a theoretical basis for cloning saline-alkaline tolerance genes and molecular breeding to improve saline-alkaline tolerance in peach.
Objective This study aims to explore a three-dimensional planting mode in orchards and provide theoretical basis for the efficient peach-Morchella planting and soil management after Morchella cultivation. Methods Next-generation sequencing was performed to investigate the variations in soil physicochemical properties, enzyme activities and fungal composition under peach-Morchella intercropping for one year and two years, by using the soil without peach-Morchella intercropping as the control group. Results Peach-Morchella intercropping decreased the soil bulk density, and significantly increased the maximum field capacity, non-capillary porosity and total porosity, organic matter, available potassium and available zinc, which together improved soil structure and soil fertility. Besides, the intercropping mode obviously enhanced soil enzyme activities and mineral absorption and transformation in peach orchard soils. The intercropping also resulted in a decline of soil fungal diversity, and the 2-year soil samples were of higher abundance of Zygomycota. More importantly, peach-Morchella intercropping elevated the yields of both peach and Morchella, bringing about obviously higher economic benefits. Conclusion Continuous peach-Morchella intercropping improves the soil structure and fertility while decreases soil fungal diversity, which can contribute to greater economic benefits of the peach orchard. Our findings shed new light on the intercropping-fungus-soil relationship, and may facilitate the further development of peach-Morchella intercropping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.