• CD38-expressing immunosuppressive regulatory T and B cells and myeloid-derived suppressor cells were sensitive to daratumumab treatment.• Cytotoxic T-cell number, activation, and clonality increased after daratumumab treatment in heavily pretreated relapsed and refractory MM.Daratumumab targets CD38-expressing myeloma cells through a variety of immunemediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cellmediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab's effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse. Regulatory B cells and myeloid-derived suppressor cells, previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8 1 :CD4 1 and CD8 1:Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T-cell increases, elevated antiviral and alloreactive functional responses, and significantly greater increases in T-cell clonality as measured by T-cell receptor (TCR) sequencing. Increased TCR clonality positively correlated with increased CD81 PB T-cell counts. Depletion of CD38 1 immunosuppressive cells, which is associated with an increase in T-helper cells, cytotoxic T cells, T-cell functional response, and TCR clonality, represents possible additional mechanisms of action for daratumumab and deserves further exploration. (Blood. 2016;128(3):384-394)
CD38, a type II transmembrane glycoprotein highly expressed in hematological malignancies including multiple myeloma (MM), represents a promising target for mAb-based immunotherapy. In this study, we describe the cytotoxic mechanisms of action of daratumumab, a novel, high-affinity, therapeutic human mAb against a unique CD38 epitope. Daratumumab induced potent Ab-dependent cellular cytotoxicity in CD38-expressing lymphoma- and MM-derived cell lines as well as in patient MM cells, both with autologous and allogeneic effector cells. Daratumumab stood out from other CD38 mAbs in its strong ability to induce complement-dependent cytotoxicity in patient MM cells. Importantly, daratumumab-induced Ab-dependent cellular cytotoxicity and complement-dependent cytotoxicity were not affected by the presence of bone marrow stromal cells, indicating that daratumumab can effectively kill MM tumor cells in a tumor-preserving bone marrow microenvironment. In vivo, daratumumab was highly active and interrupted xenograft tumor growth at low dosing. Collectively, our results show the versatility of daratumumab to effectively kill CD38-expressing tumor cells, including patient MM cells, via diverse cytotoxic mechanisms. These findings support clinical development of daratumumab for the treatment of CD38-positive MM tumors.
Key Points• Response to the CD38-targeting antibody daratumumab is significantly associated with CD38 expression levels on the tumor cells.• Resistance to daratumumab is accompanied by increased expression of complementinhibitory proteins.The anti-CD38 monoclonal antibody daratumumab is well tolerated and has high single agent activity in heavily pretreated relapsed and refractory multiple myeloma (MM). However, not all patients respond, and many patients eventually develop progressive disease to daratumumab monotherapy. We therefore examined whether pretreatment expression levels of CD38 and complement-inhibitory proteins (CIPs) are associated with response and whether changes in expression of these proteins contribute to development of resistance. In a cohort of 102 patients treated with daratumumab monotherapy (16 mg/kg), we found that pretreatment levels of CD38 expression on MM cells were significantly higher in patients who achieved at least partial response (PR) compared with patients who achieved less than PR. However, cell surface expression of the CIPs, CD46, CD55, and CD59, was not associated with clinical response. In addition, CD38 expression was reduced in both bone marrow-localized and circulating MM cells, following the first daratumumab infusion. CD38 expression levels on MM cells increased again following daratumumab discontinuation. In contrast, CD55 and CD59 levels were significantly increased on MM cells only at the time of progression. All-trans retinoic acid increased CD38 levels and decreased CD55 and CD59 expression on MM cells from patients who developed daratumumab resistance, to approximately pretreatment values. This resulted in significant enhancement of daratumumab-mediated complement-dependent cytotoxicity. Together, these data demonstrate an important role for CD38 and CIP expression levels in daratumumab sensitivity and suggest that therapeutic combinations that alter CD38 and CIP expression levels should be investigated in the treatment of MM. These trials were registered at www.clinicaltrials.gov as #NCT00574288 (GEN501) and #NCT01985126 (SIRIUS). (Blood. 2016;128(7):959-970)
Regulatory T cells (Tregs) are a specific subset of lymphocytes that are critical for the maintenance of self-tolerance. Expression levels of the transcription factor Foxp3 have been causally associated with Treg differentiation and function. Recent studies show that Foxp3 can also be transiently expressed in effector T cells; however, stable Foxp3 expression is required for development of a functional Treg suppressor phenotype. Here, we demonstrate that Foxp3 is acetylated, and this can be reciprocally regulated by the histone acetyltransferase p300 and the histone deacetylase SIRT1. Hyperacetylation of Foxp3 prevented polyubiquitination and proteasomal degradation, therefore dramatically increasing stable Foxp3 protein levels. Moreover, using mouse splenocytes, human peripheral blood mononuclear cells, T cell clones, and skin-derived T cells, we demonstrate that treatment with histone deacetylase inhibitors resulted in significantly increased numbers of functional Treg cells. Taken together, our data demonstrate that modulation of the acetylation state of Foxp3 provides a novel molecular mechanism for assuring rapid temporal control of Foxp3 levels in T cells, thereby regulating Treg numbers and functionality. Manipulating Foxp3 acetylation levels could therefore provide a new therapeutic strategy to control inappropriate (auto)immune responses.
Donor lymphocyte infusion (DLI) into patients with a relapse of their leukemia or multiple myeloma after allogeneic stem cell transplantation (alloSCT) has been shown to be a successful treatment approach. The hematopoiesis-restricted minor histocompatibility antigens (mHAgs) HA-1 or HA-2 expressed on malignant cells of the recipient may serve as target antigens for alloreactive donor T cells. Recently we treated three mHAg HA-1-and͞or HA-2-positive patients with a relapse of their disease after alloSCT with DLI from their mHAg HA-1-and͞or HA-2-negative donors. Using HLA-A2͞HA-1 and HA-2 peptide tetrameric complexes we showed the emergence of HA-1-and HA-2-specific CD8 ؉ T cells in the blood of the recipients 5-7 weeks after DLI. The appearance of these tetramer-positive cells was followed immediately by a complete remission of the disease and restoration of 100% donor chimerism in each of the patients. Furthermore, cloned tetramer-positive T cells isolated during the clinical response specifically recognized HA-1 and HA-2 expressing malignant progenitor cells of the recipient and inhibited the growth of leukemic precursor cells in vitro. Thus, HA-1-and HA-2-specific cytotoxic T lymphocytes emerging in the blood of patients after DLI demonstrate graft-versus-leukemia or myeloma reactivity resulting in a durable remission. This finding implies that in vitro generated HA-1-and HA-2-specific cytotoxic T lymphocytes could be used as adoptive immunotherapy to treat hematological malignances relapsing after alloSCT.T reatment of patients with leukemia relapsing after allogeneic stem cell transplantation (alloSCT) by donor lymphocyte infusion (DLI) can induce long-lasting complete remissions through graft-versus-leukemia (GVL) reactivity (1-4). Complete molecular remissions (mCRs) of relapsed chronic myeloid leukemia (CML) in chronic phase have been obtained in 70-80% of treated patients (5-7). In contrast, patients with relapsed acute leukemia or CML in accelerated phase or blast crisis respond in only 20-35% of the cases (3,7,8). In a minority of patients with relapsed or persistent multiple myeloma, a graft-versus-myeloma effect after DLI has been demonstrated as well (9-11).Little is known about the nature and kinetics of antileukemic T cell responses involved in the GVL or graft-versus-myeloma effect after DLI. In patients with relapsed CML after alloSCT who have been treated with low-dose DLI, the time to achieve an mCR may vary from several weeks to 1 year (5, 12). Previously we showed that 5-15 weeks after DLI for relapsed CML significantly increased numbers of cytotoxic T lymphocytes (CTLs) recognizing malignant hematopoietic progenitor cells (HPCs) could be detected in peripheral blood of the recipients (13).In HLA genotypically identical donor-recipient pairs alloreactive donor T cells may recognize minor histocompatibility antigens (mHAgs) expressed on recipient cells (14). Ubiquitously expressed mHAgs such as HY (15-20), HA-3, HA-4, HA-6, HA-7 (14, 15), and HA-8 (21) may play a role in both graftversus-hos...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.