Bile acids are synthesized from cholesterol in the liver and further metabolized by the gut microbiota into secondary bile acids. Bile acid synthesis is under negative feedback control through activation of the nuclear receptor farnesoid X receptor (FXR) in the ileum and liver. Here we profiled the bile acid composition throughout the enterohepatic system in germ-free (GF) and conventionally raised (CONV-R) mice. We confirmed a dramatic reduction in muricholic acid, but not cholic acid, levels in CONV-R mice. Rederivation of Fxr-deficient mice as GF demonstrated that the gut microbiota regulated expression of fibroblast growth factor 15 in the ileum and cholesterol 7α-hydroxylase (CYP7A1) in the liver by FXR-dependent mechanisms. Importantly, we identified tauro-conjugated beta- and alpha-muricholic acids as FXR antagonists. These studies suggest that the gut microbiota not only regulates secondary bile acid metabolism but also inhibits bile acid synthesis in the liver by alleviating FXR inhibition in the ileum.
Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.
SUMMARY Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically predisposed to T1D. Modeling trajectories of microbial abundances through infancy revealed a subset of microbial relationships shared across most subjects. Although strain composition of a given species was highly variable between individuals, it was stable within individuals throughout infancy. Metabolic composition and metabolic pathway abundance remained constant across time. A marked drop in alpha-diversity was observed in T1D progressors in the time-window between seroconversion and T1D diagnosis, accompanied by spikes in inflammation-favoring organisms, gene functions, and serum and stool metabolites. This work identifies trends in the development of the human infant gut microbiome along with specific alterations that precede T1D onset and distinguish T1D progressors from non-progressors.
Activation of lipid metabolism is an early event in carcinogenesis and a central hallmark of many cancers. However, the precise molecular composition of lipids in tumors remains generally poorly characterized. The aim of the present study was to analyze the global lipid profiles of breast cancer, integrate the results to protein expression, and validate the findings by functional experiments. Comprehensive lipidomics was conducted in 267 human breast tissues using ultraperformance liquid chromatography/ mass spectrometry. The products of de novo fatty acid synthesis incorporated into membrane phospholipids, such as palmitatecontaining phosphatidylcholines, were increased in tumors as compared with normal breast tissues. These lipids were associated with cancer progression and patient survival, as their concentration was highest in estrogen receptor-negative and grade 3 tumors. In silico transcriptomics database was utilized in investigating the expression of lipid metabolism related genes in breast cancer, and on the basis of these results, the expression of specific proteins was studied by immunohistochemistry. Immunohistochemical analyses showed that several genes regulating lipid metabolism were highly expressed in clinical breast cancer samples and supported also the lipidomics results. Gene silencing experiments with seven genes [ACACA (acetyl-CoA carboxylase a), ELOVL1 (elongation of very long chain fatty acid-like 1), FASN (fatty acid synthase), INSIG1 (insulin-induced gene 1), SCAP (sterol regulatory element-binding protein cleavageactivating protein), SCD (stearoyl-CoA desaturase), and THRSP (thyroid hormone-responsive protein)] indicated that silencing of multiple lipid metabolism-regulating genes reduced the lipidomic profiles and viability of the breast cancer cells. Taken together, our results imply that phospholipids may have diagnostic potential as well as that modulation of their metabolism may provide therapeutic opportunities in breast cancer treatment. Cancer Res; 71(9); 3236-45. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.