BACKGROUND: Whole-genome sequencing of pathogens can improve resolution of outbreak clusters and define possible transmission networks. We applied high-throughput genome sequencing of SARS-CoV-2 to 75% of cases in the State of Victoria (population 6.24 million) in Australia. METHODS:Cases of SARS-CoV-2 infection were detected through active case finding and contact tracing. A dedicated SARS-CoV-2 multidisciplinary genomic response team was formed to enable rapid integration of epidemiological and genomic data. Phylodynamic analysis was performed to assess the putative impact of social restrictions. RESULTS:Between 25 January and 14 April 2020, 1,333 COVID-19 cases were reported in Victoria, with a peak in late March. After applying internal quality control parameters, 903 samples were included in genomic analyses. Sequenced samples from Australia were representative of the global diversity of SARS-CoV-2, consistent with epidemiological findings of multiple importations and limited onward transmission. In total, 76 distinct genomic clusters were identified; these included large clusters associated with social venues, healthcare facilities and cruise ships. Sequencing of sequential samples from 98 patients revealed minimal intra-patient SARS-CoV-2 genomic diversity.Phylodynamic modelling indicated a significant reduction in the effective viral reproductive number (Re) from 1.63 to 0.48 after the implementation of travel restrictions and population-level physical distancing.
Genomic sequencing has significant potential to inform public health management for SARS-CoV-2. Here we report high-throughput genomics for SARS-CoV-2, sequencing 80% of cases in Victoria, Australia (population 6.24 million) between 6 January and 14 April 2020 (total 1,333 COVID-19 cases). We integrate epidemiological, genomic and phylodynamic data to identify clusters and impact of interventions. The global diversity of SARS-CoV-2 is represented, consistent with multiple importations. Seventy-six distinct genomic clusters were identified, including large clusters associated with social venues, healthcare and cruise ships. Sequencing sequential samples from 98 patients reveals minimal intra-patient SARS-CoV-2 genomic diversity. Phylodynamic modelling indicates a significant reduction in the effective viral reproductive number (R e) from 1.63 to 0.48 after implementing travel restrictions and physical distancing. Our data provide a concrete framework for the use of SARS-CoV-2 genomics in public health responses, including its use to rapidly identify SARS-CoV-2 transmission chains, increasingly important as social restrictions ease globally.
Background A cornerstone of Australia's ability to control COVID-19 has been effective border control with an extensive supervised quarantine programme. However, a rapid recrudescence of COVID-19 was observed in the state of Victoria in June, 2020. We aim to describe the genomic findings that located the source of this second wave and show the role of genomic epidemiology in the successful elimination of COVID-19 for a second time in Australia.Methods In this observational, genomic epidemiological study, we did genomic sequencing of all laboratoryconfirmed cases of COVID-19 diagnosed in Victoria, Australia between Jan 25, 2020, and Jan 31, 2021. We did phylogenetic analyses, genomic cluster discovery, and integrated results with epidemiological data (detailed information on demographics, risk factors, and exposure) collected via interview by the Victorian Government Department of Health. Genomic transmission networks were used to group multiple genomic clusters when epidemiological and genomic data suggested they arose from a single importation event and diversified within Victoria. To identify transmission of emergent lineages between Victoria and other states or territories in Australia, all publicly available SARS-CoV-2 sequences uploaded before Feb 11, 2021, were obtained from the national sequence sharing programme AusTrakka, and epidemiological data were obtained from the submitting laboratories. We did phylodynamic analyses to estimate the growth rate, doubling time, and number of days from the first local infection to the collection of the first sequenced genome for the dominant local cluster, and compared our growth estimates to previously published estimates from a similar growth phase of lineage B.1.1.7 (also known as the Alpha variant) in the UK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.