Wound dressings impregnated with silver have a role to play in aiding to reduce both the dressing and wound microbial bioburden. It is therefore imperative that antimicrobial wound dressings have efficacy on a broad range of clinical significant microorganisms. Accordingly, this study aimed to determine the antimicrobial efficacy of a silver alginate dressing against 115 wound isolates that had been isolated routinely from patients at West Virginia University Hospital. Standardised corrected zones of inhibition (CZOIs) were performed on all clinical isolates. It was found that the silver alginate dressing was able to inhibit the growth of all microorganisms tested. In particular, the silver alginate dressing inhibited the growth of Candida albicans and yeasts with CZOI of 3-11·5 mm. All meticillin-resistant Staphylococcus aureus (MRSA) strains were found to be sensitive to the silver alginate dressing with a CZOI range calculated at 3-7·8 mm. Sensitivity to the silver alginate dressing was also evident for S. aureus and vancomycin-resistant Enterococci. CZOIs of 4·25 mm were calculated for Enterococcus faecium and 9·8 mm for viridans streptococcus. The bacteria which demonstrated the highest tolerance to ionic silver included Enterobacter cloacae and Acinetobacter baumannii. Contrary to this the most responsive microorganisms to ionic silver included strains of staphylococci, viridans streptococcus and Candida albicans. No antibiotic-resistant isolates, as identified by Kirby Bauer Clinical Laboratory Standards Institute classification system, were found to be resistant to ionic silver. When a selected number of microorganisms were grown in the biofilm phenotypic state enhanced tolerance to silver was observed, compared to their non biofilm counterparts. Overall, this study has demonstrated the broad antimicrobial activity of a silver alginate dressing on wound isolates grown in the non biofilm and biofilm state. This finding is clinically relevant as both the non biofilm and biofilm phenotypic states of microorganisms are evident in wounds and therefore significant to delayed healing. Consequently, it is imperative that antimicrobial wound dressings demonstrate antimicrobial activity against microorganisms in both phenotypic states.
The antibiotic-resistant bacteria are a major concern to wound care because of their ability to resist many of the antibiotics used today to treat infections. Consequently, other antimicrobials, in particular ionic silver, are considered ideal topical agents for effectively helping to manage and prevent local infections. Little is known about the antimicrobial efficacy of ionic silver on antibiotic-resistant bacteria at different pH values. Consequently, in this study our aim was to evaluate the effect of pH on the antimicrobial efficacy of a silver alginate (SA) and a silver carboxymethyl cellulose (SCMC) dressing on antibiotic-resistant bacteria isolated from burn patients. Forty-nine antibiotic-resistant bacteria, including Vancomycin-resistant Enterococcus faecium, meticillin-resistant Staphylococcus aureus, multidrug-resistant (MDR) Pseudomonas aeruginosa, MDR Vibrio sp, MDR Stenotrophomonas maltophilia, extended-spectrum ß-lactamase (ESBL) producing Salmonella sp, ESBL producing Klebsiella pneumoniae, ESBL producing Proteus mirabilis, ESBL producing Escherichia coli and MDR Acinetobacter baumannii, routinely isolated from burn wounds were used in the study and evaluated for their susceptibility to two silver containing wound dressings using a standardised antimicrobial efficacy screening assay [corrected zone of inhibition (CZOI)]. The mean overall CZOI for the Gram-positive isolates at a pH of 5·5 were very similar for both dressings. A mean CZOI of 5 mm was recorded for the SCMC dressing, which was slightly higher, at 5·4 mm for the SA dressing. At a pH of 7·0 both dressings, in general, showed a similar activity. However, at a pH of 8·5 the mean CZOI of the SCMC dressing was found to be significantly (P < 0·05) higher than the SA dressing for a select number of isolates. The mean overall CZOI for the Gram-negative bacteria followed a similar pattern as observed with the Gram-positive bacteria. Susceptibility to silver ions did vary significantly between genera and species of bacteria. Interestingly, when pH was changed from 8·5 to 5·5 antimicrobial activity for both dressings in general increased significantly (P < 0·05). Overall, all forty-nine antibiotic-resistant bacteria isolated from burn wounds showed susceptibility to the antimicrobial activity of both silver containing wound dressings over all pH ranges. In addition, the study showed that the performance of both dressings apparently increased when pH became more acidic. The findings in this study may help to further enhance our knowledge of the role pH plays in affecting both bacterial susceptibility and antimicrobial activity of silver containing wound dressings.
In this study our objectives were (1) to investigate whether meticillin-resistant Staphylococcus aureus (MRSA) showed an increased tolerance to silver wound dressings compared with meticillin-sensitive S. aureus (MSSA); and (2) to evaluate the effects of bacterial phenotypic states of MRSA and MSSA, and pH, on the activity of silver wound dressings and two antibiotics, ampicillin and clindamycin. Twenty MRSA strains and 10 MSSA strains isolated from burns patients in South Africa were evaluated for their susceptibility to a silver alginate and a silver carboxymethyl cellulose wound dressing, employing a corrected zone of inhibition assay, conducted on Mueller Hinton agar and a poloxamer-based biofilm model. When exposed to the two silver dressings, all 30 S. aureus strains showed susceptibility. Possible enhanced antimicrobial efficacy of the silver dressings occurred when pH was lowered to 5.5, compared with a pH of 7.0. When all S. aureus were grown in the biofilm phenotypic state and exposed to both silver dressings and antibiotics, enhanced tolerance was noted. Susceptibility to silver was overall higher for MRSA when compared with MSSA. This study showed that the effect of pH and bacterial phenotypic state must be considered when the antimicrobial activity of silver wound dressings is being investigated. It is evident from the data generated that both pH and the bacterial phenotypic state are factors that induce changes that affect both antimicrobial performance and bacterial susceptibility.
SLP is employed by Advanced Medical Solutions Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.