The development of a water oxidation catalyst has been a demanding challenge in realizing water splitting systems. The asymmetric geometry and flexible ligation of the biological Mn4CaO5 cluster are important properties for the function of photosystem II, and these properties can be applied to the design of new inorganic water oxidation catalysts. We identified a new crystal structure, Mn3(PO4)2·3H2O, that precipitates spontaneously in aqueous solution at room temperature and demonstrated its high catalytic performance under neutral conditions. The bulky phosphate polyhedron induces a less-ordered Mn geometry in Mn3(PO4)2·3H2O. Computational analysis indicated that the structural flexibility in Mn3(PO4)2·3H2O could stabilize the Jahn-Teller-distorted Mn(III) and thus facilitate Mn(II) oxidation. This study provides valuable insights into the interplay between atomic structure and catalytic activity.
A high CO2 to CO electroreduction rate exceeding 300 mA cm−2 was achieved with single atom nickel and nitrogen doped three-dimensional porous carbon electrocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.