Tenosynovial giant cell tumor (TSGCT) is a rare neoplasm. Although surgical resection is the widely accepted primary treatment for TSGCT, recurrences are frequent, and patients’ joint function may be severely compromised. Previous studies reported that CSF1‐COL6A3 fusion genes were identified in approximately 30% of TSGCTs. The aim of our study was to comprehensively clarify the genomic abnormalities in TSGCTs. We performed whole exome sequencing in combination with target sequence validation on 34 TSGCT samples. RNA sequencing was also performed on 18 samples. RNA sequencing revealed fusion transcripts involving CSF1, including novel CSF1‐VCAM1, CSF1‐FN1 and CSF1‐CDH1 fusions, in 13/18 (72%) cases. These fusion genes were validated by chromogenic in situ hybridization. All CSF1 fusions resulted in the deletion of CSF1 exon 9, which was previously shown to be an important negative regulator of CSF1 expression. We also found that 12 (35%) of the 34 TSGCT samples harbored CBL missense mutations. All mutations were detected in exons 8 or 9, which encode the linker and RING finger domain. Among these mutations, C404Y, L380P and R420Q were recurrent. CBL‐mutated cases showed higher JAK2 expression than wild‐type CBL cases (p = 0.013). CSF1 fusion genes and CBL mutations were not mutually exclusive, and both alterations were detected in six of the 18 (33%) tumors. The frequent deletion of CSF1 exon 9 in the fusion transcripts suggested the importance of this event in the etiology of TSGCT. Our results may contribute to the development of new targeted therapies using JAK2 inhibitors for CBL‐mutated TSGCT.
Myxoid/round cell liposarcoma (MRCL), unlike other soft tissue sarcomas, has been associated with unusual pattern of metastasis to extrapulmonary sites. In an attempt to elucidate the clinical features of MRCL with metastatic lesions, 58 cases, from the medical database of Keio University Hospital were used for the evaluation. 47 patients (81%) had no metastases, whereas 11 patients (11%) had metastases during their clinical course. Among the 11 patients with metastatic lesions, 8 patients (73%) had extrapulmonary metastases and 3 patients (27%) had pulmonary metastases. Patients were further divided into three groups; without metastasis, with extrapulmonary metastasis, and with pulmonary metastasis. When the metastatic patterns were stratified according to tumor size, there was statistical significance between the three groups (P = 0.028). The 8 cases with extrapulmonary metastases were all larger than 10 cm. Similarly, histological grading had a significant impact on metastatic patterns (P = 0.027). 3 cases with pulmonary metastatic lesions were all diagnosed as high grade. In conclusion, large size and low histological grade were significantly associated with extrapulmonary metastasis.
Mesenchymal chondrosarcoma (MC) is an extremely rare subtype of chondrosarcoma. A tumor specific fusion gene, HEY1-NCOA2 fusion, was recently identified in this tumor. The finding raises the possibility that the diagnosis of MC can be improved by examining the fusion gene. In the present study, we aimed to evaluate the efficacy of fluorescence in situ hybridization (FISH) in detecting HEY1-NCOA2 fusion for the diagnosis of MC. Specimens from 10 patients diagnosed with MC were used for the study. Dual-color FISH was performed using two different probes that specifically hybridize to HEY1 and NCOA2, respectively. Fusion signals were identified in all but two specimens, in which no signal was detected, presumably because of inadequate sample preparation. In accordance with results of a previous study, FISH analysis was highly sensitive in detecting HEY1-NCOA2 fusion in adequately prepared MC samples. The current study adds further support for the use of HEY1-NCOA2 fusion as a valid diagnostic marker for MC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.