Rationale The accuracy and impact of new tuberculosis (TB) tests, such as Xpert MTB/RIF, when performed on bronchoalveolar lavage fluid (BALF) obtained from patients with sputum-scarce or smear-negative TB is unclear. Methods South African patients with suspected pulmonary TB (n=160) who were sputum-scarce or smear-negative underwent bronchoscopy. MTB/RIF was performed on uncentrifuged BALF (1 ml) and/or a resuspended pellet of centrifuged BALF (~10 ml). Time to TB detection and anti-TB treatment initiation were compared between phase one, when MTB/RIF was performed as a research tool, and phase two, when it was used for patient management. Results 27 of 154 patients with complete data had culture-confirmed TB. Of these, a significantly lower proportion were detected by smear microscopy compared with MTB/RIF (58%, 95% CI 39% to 75% versus 93%, 77% to 98%; p<0.001). Of the 127 patients who were culture negative, 96% (91% to 98%) were MTB/RIF negative. When phase two was compared with phase one, MTB/RIF reduced the median days to TB detection (29 (18–41) to 0 (0–0); p<0.001). However, more patients initiated empirical therapy (absence of a positive test in those commencing treatment) in phase one versus phase two (79% (11/14) versus 28% (10/25); p=0.026). Consequently, there was no detectable difference in the overall proportion of patients initiating treatment (26% (17/67; 17% to 37%) versus 36% (26/73; 26% to 47%); p=0.196) or the days to treatment initiation (10 (1–49) versus 7 (0–21); p=0.330). BALF centrifugation, HIV coinfection and a second MTB/RIF did not result in detectable changes in accuracy. Conclusions MTB/RIF detected TB cases more accurately and more rapidly than smear microscopy and significantly reduced the rate of empirical treatment.
Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor biopsies. We also report that USP17 is tightly regulated during the cell cycle in all the cells examined, being abundantly evident in G 1 and absent in S phase. Moreover, regulated USP17 expression was necessary for cell cycle progression because its depletion significantly impaired G 1 -S transition and blocked cell proliferation. Previously, we have shown that USP17 regulates the intracellular translocation and activation of the GTPase Ras by controlling Ras-converting enzyme 1 (RCE1) activation. RCE1 also regulates the processing of other proteins with a CAAX motif, including Rho family GTPases. We now show that USP17 depletion blocks Ras and RhoA localization and activation. Moreover, our results confirm that USP17-depleted cells have constitutively elevated levels of the cyclin-dependent kinase inhibitors p21 cip1 and p27 kip1 , known downstream targets of Ras and RhoA signaling. These observations clearly show that USP17 is tightly regulated during cell division and that its expression is necessary to coordinate cell cycle progression, and thus, it may be considered a promising novel cancer therapeutic target.
BackgroundTuberculous pericarditis (TBP) is associated with high morbidity and mortality, and is an important treatable cause of heart failure in developing countries. Tuberculous aetiology of pericarditis is difficult to diagnose promptly. The utility of the new quantitative PCR test (Xpert MTB/RIF) for the diagnosis of TBP is unknown. This study sought to evaluate the diagnostic accuracy of the Xpert MTB/RIF test compared to pericardial adenosine deaminase (ADA) and unstimulated interferon-gamma (uIFNγ) in suspected TBP.MethodsFrom October 2009 through September 2012, 151 consecutive patients with suspected TBP were enrolled at a single centre in Cape Town, South Africa. Mycobacterium tuberculosis culture and/or pericardial histology served as the reference standard for definite TBP. Receiver-operating-characteristic curve analysis was used for selection of ADA and uIFNγ cut-points.ResultsOf the participants, 49% (74/151) were classified as definite TBP, 33% (50/151) as probable TBP and 18% (27/151) as non TBP. A total of 105 (74%) participants were human immunodeficiency virus (HIV) positive. Xpert-MTB/RIF had a sensitivity and specificity (95% confidence interval (CI)) of 63.8% (52.4% to 75.1%) and 100% (85.6% to 100%), respectively. Concentration of pericardial fluid by centrifugation and using standard sample processing did not improve Xpert MTB/RIF accuracy. ADA (≥35 IU/L) and uIFNγ (≥44 pg/ml) both had a sensitivity of 95.7% (88.1% to 98.5%) and a negative likelihood ratio of 0.05 (0.02 to 0.10). However, the specificity and positive likelihood ratio of uIFNγ was higher than ADA (96.3% (81.7% to 99.3%) and 25.8 (3.6 to 183.4) versus 84% (65.4% to 93.6%) and 6.0 (3.7 to 9.8); P = 0.03) at an estimated background prevalence of TB of 30%. The sensitivity and negative predictive value of both uIFNγ and ADA were higher than Xpert-MT/RIF (P < 0.001).ConclusionsuIFNγ offers superior accuracy for the diagnosis of microbiologically confirmed TBP compared to the ADA assay and the Xpert MTB/RIF test.
The proto-oncogene Ras undergoes a series of post-translational modifications at its carboxyl-terminal CAAX motif that are essential for its proper membrane localization and function. One step in this process is the cleavage of the CAAX motif by the enzyme Ras-converting enzyme 1 (RCE1). Here we show that the deubiquitinating enzyme USP17 negatively regulates the activity of RCE1. We demonstrate that USP17 expression blocks Ras membrane localization and activation, thereby inhibiting phosphorylation of the downstream kinases MEK and ERK. Furthermore, we show that this effect is caused by the loss of RCE1 catalytic activity as a result of its deubiquitination by USP17. We also show that USP17 and RCE1 co-localize at the endoplasmic reticulum and that USP17 cannot block proliferation or Ras membrane localization in RCE1 null cells. These studies demonstrate that USP17 modulates Ras processing and activation, at least in part, by regulating RCE1 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.