CD20 is an important target for the treatment of B-cell malignancies, including non-Hodgkin lymphoma as well as autoimmune disorders. B-cell depletion therapy using monoclonal antibodies against CD20, such as rituximab, has revolutionized the treatment of these disorders, greatly improving overall survival in patients. Here, we report the development of GA101 as the first Fc-engineered, type II humanized IgG1 antibody against CD20. Relative to rituximab, GA101 has increased direct and immune effector cellmediated cytotoxicity and exhibits superior activity in cellular assays and whole blood B-cell depletion assays. In human lymphoma xenograft models, GA101 exhibits superior antitumor activity, resulting in the induction of complete tumor remission and increased overall survival. IntroductionRituximab, a type I chimeric IgG1 anti-CD20 antibody, has revolutionized the management and treatment of B-cell malignancies, increasing the median overall survival of patients with many of these diseases. 1 In combination with chemotherapy, it has significantly improved response rates and progression-free and overall survival of patients with diffuse large B-cell lymphoma (DLBCL) or follicular lymphoma. 1,2 Rituximab treatment has also benefited patients with other diseases amenable to B-cell depletion therapy, including B-cell chronic lymphocytic leukemia (B-CLL) and rheumatoid arthritis. 2,3 Nevertheless, relapse is a common occurrence, for example, in B-CLL, and there remains a need for treatments that delay the onset of relapse without increasing toxicity. 1 To this end, various therapeutic approaches are being explored, including new chemotherapies, small molecules, antibodydrug conjugates, and the use of alternative B-cell targets. However, in contrast to the situation with rituximab, the clinical benefit of these therapies remains to be demonstrated. In addition, many of these agents exhibit poor safety and tolerability profiles or necessitate the use of more complex treatment regimens.Thus far, CD20 has been the most effective unconjugated antibody target for the treatment of B-cell malignancies. An alternative and complementary approach is to generate new unconjugated CD20 antibodies with enhanced functional activities that may lead to superior efficacy. Three types of functional activities of anti-CD20 antibodies have been described: signaling in target cells on CD20 binding leading to growth inhibition and (nonclassic) apoptosis (referred to as "direct cell death"), complement-dependent cytotoxicity (CDC), and antibodydependent cellular cytotoxicity (ADCC) mediated by cells displaying Fc␥ receptors (Fc␥Rs), such as Fc␥RIIIa-expressing NK cells and macrophages. 4,5 Anti-CD20 antibodies with different functions may be generated either (1) by selecting antibodies that bind to a different CD20 epitope, which bind in an alternative mode or with changed affinity, resulting in altered intensity or type of functional mechanism; or (2) by engineering the Fc region of the antibody to enhance immune effector functions. The ...
The effector functions elicited by IgG antibodies strongly depend on the carbohydrate moiety linked to the Fc region of the protein. Therefore several approaches have been developed to rationally manipulate these glycans and improve the biological functions of the antibody. Overexpression of recombinant beta1,4-N-acetylglucosaminyltransferase III (GnT-III) in production cell lines leads to antibodies enriched in bisected oligosaccharides. Moreover, GnT-III overexpression leads to increases in non-fucosylated and hybrid oligosaccharides. Such antibody glycovariants have increased antibody-dependent cellular cytotoxicity (ADCC). To explore a further variable besides overexpression of GnT-III, we exchanged the localization domain of GnT-III with that of other Golgi-resident enzymes. Our results indicate that chimeric GnT-III can compete even more efficiently against the endogenous core alpha1,6-fucosyltransferase (alpha1,6-FucT) and Golgi alpha-mannosidase II (ManII) leading to higher proportions of bisected non-fucosylated hybrid glycans ("Glyco-1" antibody). The co-expression of GnT-III and ManII led to a similar degree of non-fucosylation as that obtained for Glyco-1, but the majority of the oligosaccharides linked to this antibody ("Glyco-2") are of the complex type. These glycovariants feature strongly increased ADCC activity compared to the unmodified antibody, while Glyco-1 (hybrid-rich) features reduced complement-dependent cytotoxicity (CDC) compared to Glyco-2 or unmodified antibody. We show that apart from GnT-III overexpression, engineering of GnT-III localization is a versatile tool to modulate the biological activities of antibodies relevant for their therapeutic application.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.