BackgroundTreatment failure of chloroquine for P. vivax infections has reached high levels in the eastern provinces of Indonesia, however, in vitro characterization of chloroquine resistance and its associated molecular profile have yet to be determined.MethodsUsing a modified schizont maturation assay we investigated the in vitro chloroquine susceptibility profile and molecular polymorphisms of P. vivax isolates collected from Papua, Indonesia, where high levels of clinical chloroquine treatment failure have been reported, and from Thailand, where chloroquine treatment is generally effective.ResultsThe geometric mean chloroquine IC50 for P. vivax isolates from Papua (n = 145) was 312 nM [95%CI: 237–411 nM] compared to 46.8 nM [95%CI: 34.7–63.1 nM] from Thailand (n = 81); p<0.001. Correlating with the known clinical efficacy of the area, a cut off for chloroquine resistance was defined as 220nM, a level exceeded in 13.6% (11/81) of Thai isolates and 65% (94/145) of Papuan isolates; p<0.001. Several sequence polymorphisms in pvcrt-o and pvmdr1, and difference in pvmdr1 copy number were identified. A Y976F mutation in pvmdr1 was present in 96% (123/128) of Papuan isolates and 25% (17/69) of Thai isolates; p<0.001. Overall, the geometric mean chloroquine IC50 in isolates with the Y976F mutation was 283 nM [95%CI: 211–379], compared to 44.5 nM [95%CI: 31.3–63.4] in isolates with the wild type; p< 0.001. Pvmdr1 amplification occurred in 23% (15/66) of Thai isolates compared to none (0/104) of Indonesian isolates (p<0.001), but was not associated with increased chloroquine resistance after controlling for geographical location.Conclusions In vitro susceptibility testing of P. vivax discriminates between populations with differing levels of clinical efficacy of chloroquine. The pvmdr1 polymorphism at Y976F may provide a useful tool to highlight areas of emerging chloroquine resistance, although further studies defining its clinical correlates are needed.
Amplification of pvmdr1 and single-nucleotide polymorphisms are correlated with susceptibility of P. vivax to multiple antimalarial drugs. Chloroquine and mefloquine appear to exert competitive evolutionary pressure on pvmdr1, similar to that observed with pfmdr1 in Plasmodium falciparum.
Background: Investigations of Plasmodium vivax are restricted to samples collected from infected persons or primates, because this parasite cannot be maintained in in vitro cultures. Contamination of P. vivax isolates with host leukocytes and platelets is detrimental to a range of ex vivo and molecular investigations. Easy-to-produce CF11 cellulose filters have recently provided us with an inexpensive method for the removal of leukocytes and platelets. This contrasted with previous reports of unacceptably high levels of infected red blood cell (IRBC) retention by CF11. The aims of this study were to compare the ability of CF11 cellulose filters and the commercial filter Plasmodipur at removing leukocyte and platelet, and to investigate the retention of P. vivax IRBCs by CF11 cellulose filtration.
Background: Accurate diagnosis of Plasmodium spp. is essential for the rational treatment of malaria. Despite its many disadvantages, microscopic examination of blood smears remains the current "gold standard" for malaria detection and speciation. PCR assays offer an alternative to microscopy which has been shown to have superior sensitivity and specificity. Unfortunately few comparative studies have been done on the various molecular based speciation methods.
The prevalence of Plasmodium vivax is increasing in the border regions of Thailand; one potential problem confounding the control of malaria in these regions is the emergence and spread of drug resistance. The aim of this study was to determine the genetic diversity in genes potentially linked to drug resistance in P. vivax parasites isolated from four different border regions of Thailand; Thai-Myanmar (Tak, Mae Hong Son and Prachuap Khiri Khan Provinces), and Thai-Cambodian borders (Chanthaburi Province). Isolates were collected from 345 P. vivax patients in 2008 and 2014, and parasite DNA extracted and subjected to nucleotide sequencing at five putative drug-resistance loci (Pvdhfr, Pvdhps, Pvmdr1, Pvcrt-o and Pvk12). The prevalence of mutations in Pvdhfr, Pvdhps and Pvmdr1 were markedly different between the Thai-Myanmar and Thai-Cambodian border areas and also varied between sampling times. All isolates carried the Pvdhfr (58R and 117N/T) mutation, however, whereas the quadruple mutant allele (I57R58M61T117) was the most prevalent (69.6%) in the Thai-Myanmar border region, the double mutant allele (F57R58T61N117) was at fixation on the Thai-Cambodian border (100%). The most prevalent genotypes of Pvdhps and Pvmdr1 were the double mutant (S382G383K512G553) (65.1%) and single mutant (M958Y976F1076) (46.5%) alleles, respectively on the Thai-Myanmar border while the single Pvdhps mutant (S382G383K512A553) (52.7%) and the triple Pvmdr1 mutant (M958F976L1076) (81%) alleles were dominant on the Thai-Cambodian border. No mutations were observed in the Pvcrt-o gene in either region. Novel mutations in the Pvk12 gene, the P. vivax orthologue of PfK13, linked to artemisinin resistance in Plasmodium falciparum, were observed with three nonsynonymous and three synonymous mutations in six isolates (3.3%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.