We report recent results on the performance of FLASH (Free Electron Laser in Hamburg) operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent EUV radiation source have been measured. In the saturation regime the peak energy approached 170 µJ for individual pulses while the average energy per pulse reached 70 µJ. The pulse duration was in the region of 10 femtoseconds and peak
Many scientific disciplines ranging from physics, chemistry and biology to material sciences, geophysics and medical diagnostics need a powerful X-ray source with pulse
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs-dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
FLASH has been a user facility since 2005, delivering radiation in the wavelength range between 7 and 47 nm using the SASE principle. After the present upgrade, the wavelength range is extended to 4.45 nm. With the 3rd harmonic accelerating module in place to linearize the longitudinal phase space, the stability and reproducibility of the machine is substantially improved. The user requests for beam time by far exceeds the time available. In order to increase user beam time and to improve the radiation properties delivered to users, a major extension of the user facility called FLASH II has been proposed by DESY in collaboration with the HZB. FLASH II is a seeded FEL in the parameter range of FLASH. As logical continuation, the seeding with HHG which started with sFLASH will result in direct seeding. Because in the foreseeable future there will probably not be HHG seed lasers available at high repetition rates down to wavelengths of 4 nm, a cascaded HGHG scheme is proposed to produce short wavelengths.After a first design report, the project now enters its technical design phase. During this time, the FLASH beam parameters after the present upgrade 2009/2010 will be characterized and the present design will be re-evaluated and adjusted. In addition, start-to-end simulations will complete the simulations which have been performed so far, including a design of the extraction area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.