An angular analysis of the B 0 → K *0(→ K + π −)μ + μ − decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb−1 of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and CP asymmetries, taking account of possible contamination from decays with the K + π − system in an S-wave configuration. The angular observables and their correlations are reported in bins of q 2, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for q 2-dependent decay amplitudes in the region 1.1 < q 2 < 6.0 GeV2/c 4, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of CP-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions
The isospin asymmetries of B → Kµ + µ − and B → K * µ + µ − decays and the partial branching fractions of the B 0 → K 0 µ + µ − , B + → K + µ + µ − and B + → K * + µ + µ − decays are measured as functions of the dimuon mass squared, q 2 . The data used correspond to an integrated luminosity of 3 fb −1 from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions favour lower values than their respective theoretical predictions, however they are all individually consistent with the Standard Model.
The calibration and performance of the opposite-side flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B+→J/ψK+, B0→J/ψK∗0 and B0→D∗−μ+νμ decay modes with 0.37 fb−1 of data collected in pp collisions at during the 2011 physics run. The opposite-side tagging power is determined in the B+→J/ψK+ channel to be (2.10±0.08±0.24) %, where the first uncertainty is statistical and the second is systematic.
decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B 0 ? m 1 m 2 decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B 0 s and B 0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.Experimental particle physicists have been testing the predictions of the standard model of particle physics (SM) with increasing precision since the 1970s. Theoretical developments have kept pace by improving the accuracy of the SM predictions as the experimental results gained in precision. In the course of the past few decades, the SM has passed critical tests derived from experiment, but it does not address some profound questions about the nature of the Universe. For example, the existence of dark matter, which has been confirmed by cosmological data 3 , is not accommodated by the SM. It also fails to explain the origin of the asymmetry between matter and antimatter, which after the Big Bang led to the survival of the tiny amount of matter currently present in the Universe Fig. 1c, is forbidden at the elementary level because the Z 0 cannot couple directly to quarks of different flavours, that is, there are no direct 'flavour changing neutral currents'. However, it is possible to respect this rule and still have this decay occur through 'higher order' transitions such as those shown in Fig. 1d and e. These are highly suppressed because each additional interaction vertex reduces their probability of occurring significantly. They are also helicity and CKM suppressed. Consequently, the branching fraction for the B 0 s ?m z m { decay is expected to be very small compared to the dominant b antiquark to c antiquark transitions. The corresponding decay of the B 0 meson, where a d quark replaces the s quark, is even more CKM suppressed because it requires a jump across two quark generations rather than just one.The branching fractions, B, of these two decays, accounting for higher-order electromagnetic and strong interaction effects, and using lattice quantum chromodynamics to compute the B 8,9 , such as in the diagrams shown in Fig. 1f and g, that can considerably modify the SM branching fractions. In particular, theories with additional Higgs bosons 10,11 predict possible enhancements to the branching fractions. A significant deviation of either of the two branching fraction measurements from the SM predictions would give insight on how the SM should be extended. Alternatively, a measurement compatible with the SM could provide strong constraints on BSM theories. . Both CMS and LHCb later ...
The production of J/ψ mesons in proton-proton collisions at √ s = 7 TeV is studied with the LHCb detector at the LHC. The differential cross-section for prompt J/ψ production is measured as a function of the J/ψ transverse momentum p T and rapidity y in the fiducial region p T ∈ [0; 14] GeV/c and y ∈ [2.0; 4 cross-section and fraction of J/ψ from b-hadron decays are also measured in the same p T and y ranges. The analysis is based on a data sample corresponding to an integrated luminosity of 5.2 pb −1 . The measured cross-sections integrated over the fiducial region are 10.52 ± 0.04 ± 1.40−2.20 µb for prompt J/ψ production and 1.14 ± 0.01 ± 0.16 µb for J/ψ from b-hadron decays, where the first uncertainty is statistical and the second systematic. The prompt J/ψ production cross-section is obtained assuming no J/ψ polarisation and the third error indicates the acceptance uncertainty due to this assumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.