The development of suitable contrast agents can significantly enhance the efficiency of modern imaging and treatment techniques, such as thermoacoustic (TA) tomography and radio-frequency (RF) hyperthermia of cancer. Here, we examine the heating of aqueous suspensions of silicon (Si) and gold (Au) nanoparticles (NPs) under RF irradiation in the MHz frequency range. The heating rate of aqueous suspensions of Si NPs exhibited non-monotonic dependency on the electrical conductivity of the suspension. The experimental results were explained by the mathematical model considering oscillating solvated ions as the main source of Joule heating. These ions could be the product of the dissolution of Si NPs or organic coating of Au NPs. Thus, the ions governed the conductivity of the suspensions, which in turn governs both the heating rate and the near-field RF TA response. The model predicted the contrast in different tissues taking into account both Joule heating and dielectric losses.
Due to particular physico-chemical characteristics and prominent optical properties, nanostructured germanium (Ge) appears as a promising material for biomedical applications, but its use in biological systems has been limited so far due to the difficulty of preparation of Ge nanostructures in a pure, uncontaminated state. Here, we explored the fabrication of Ge nanoparticles (NPs) using methods of pulsed laser ablation in ambient gas (He or He-N2 mixtures) maintained at low residual pressures (1–5 Torr). We show that the ablated material can be deposited on a substrate (silicon wafer in our case) to form a nanostructured thin film, which can then be ground in ethanol by ultrasound to form a stable suspension of Ge NPs. It was found that these formed NPs have a wide size dispersion, with sizes between a few nm and hundreds of nm, while a subsequent centrifugation step renders possible the selection of one or another NP size fraction. Structural characterization of NPs showed that they are composed of aggregations of Ge crystals, covered by an oxide shell. Solutions of the prepared NPs exhibited largely dominating photoluminescence (PL) around 450 nm, attributed to defects in the germanium oxide shell, while a separated fraction of relatively small (5–10 nm) NPs exhibited a red-shifted PL band around 725 nm under 633 nm excitation, which could be attributed to quantum confinement effects. It was also found that the formed NPs exhibit high absorption in the visible and near-IR spectral ranges and can be strongly heated under photoexcitation in the region of relative tissue transparency, which opens access to phototherapy functionality. Combining imaging and therapy functionalities in the biological transparency window, laser-synthesized Ge NPs present a novel promising object for cancer theranostics.
Anti-Stokes photoluminescence (ASPL), which is an up-conversion phonon-assisted process of the radiative recombination of photoexcited charge carriers, was investigated in methylammonium lead bromide (MALB) perovskite nanocrystals (NCs) with mean sizes that varied from about 6 to 120 nm. The structure properties of the MALB NCs were investigated by means of the scanning and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. ASPL spectra of MALB NCs were measured under near-resonant laser excitation with a photon energy of 2.33 eV and they were compared with the results of the photoluminescence (PL) measurements under non-resonant excitation at 3.06 eV to reveal a contribution of phonon-assisted processes in ASPL. MALB NCs with a mean size of about 6 nm were found to demonstrate the most efficient ASPL, which is explained by an enhanced contribution of the phonon absorption process during the photoexcitation of small NCs. The obtained results can be useful for the application of nanocrystalline organometal perovskites in optoelectronic and all-optical solid-state cooling devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.