The Relativistic Heavy Ion Collider (RHIC), as the world's first and only polarized proton collider, offers a unique environment in which to study the spin structure of the proton. In order to study the proton's transverse spin structure, the PHENIX experiment at RHIC took data with transversely polarized beams in 2001-02 and 2005, and it has plans for further running with transverse polarization in 2006 and beyond. Results from early running as well as prospective measurements for the future will be discussed.
Midrapidity production of π ± , K ± , and (p)p measured by the ALICE experiment at the CERN Large Hadron Collider, in Pb-Pb and inelastic pp collisions at √ s NN = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum (p T) range from hundreds of MeV/c up to 20 GeV/c. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0-90%. The comparison of the p T-integrated particle ratios, i.e., proton-to-pion (p/π) and kaon-to-pion (K/π) ratios, with similar measurements in Pb-Pb collisions at √ s NN = 2.76 TeV show no significant energy dependence. Blast-wave fits of the p T spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/π , K/π) as a function of p T show pronounced maxima at p T ≈ 3 GeV/c in central Pb-Pb collisions. At high p T , particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at √ s NN = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high p T and compatible with measurements at √ s NN = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.