Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.
Magnetometry and visualization of very small magnetic fields are vital for a large variety of the areas ranging from magnetocardiography and encephalography to nondistractive defectoscopy and ultra-low-frequency communications. It is very advantageous to measure magnetic fields using exchange-coupled spins in magnetically ordered media (flux-gate magnetometry).Here we introduce and demonstrate a novel concept of a roomtemperature magnetoplasmonic magnetic field sensor with high sensitivity and spatial resolution. It is based on the advanced fluxgate technique in which magnetization of the fully saturated magnetic film is rotated in the film plane and the monitored magnetic field is measured by detecting variation of transmittance through the sensing element: a magnetoplasmonic crystal. The experimental study revealed that such an approach allows one to reach the nT sensitivity level, which was limited by the noise of the laser. Moreover, we propose an approach to improve the sensitivity up to fT/Hz 1/2 and reach micrometer spatial resolution. Therefore, the demonstrated magnetoplasmonic magnetometry method is promising for mapping and visualization of ultrasmall magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.