Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation.
BackgroundThe transition from normal epithelium to adenoma and, to invasive carcinoma in the human colon is associated with acquired molecular events taking 5-10 years for malignant transformation. We discovered CCAT1, a non-coding RNA over-expressed in colon cancer (CC), but not in normal tissues, thereby making it a potential disease-specific biomarker. We aimed to define and validate CCAT1 as a CC-specific biomarker, and to study CCAT1 expression across the adenoma-carcinoma sequence of CC tumorigenesis.MethodsTissue samples were obtained from patients undergoing resection for colonic adenoma(s) or carcinoma. Normal colonic tissue (n = 10), adenomatous polyps (n = 18), primary tumor tissue (n = 22), normal mucosa adjacent to primary tumor (n = 16), and lymph node(s) (n = 20), liver (n = 8), and peritoneal metastases (n = 19) were studied. RNA was extracted from all tissue samples, and CCAT1 expression was analyzed using quantitative real time-PCR (qRT-PCR) with confirmatory in-situ hybridization (ISH).ResultsBorderline expression of CCAT1 was identified in normal tissue obtained from patients with benign conditions [mean Relative Quantity (RQ) = 5.9]. Significant relative CCAT1 up-regulation was observed in adenomatous polyps (RQ = 178.6 ± 157.0; p = 0.0012); primary tumor tissue (RQ = 64.9 ± 56.9; p = 0.0048); normal mucosa adjacent to primary tumor (RQ = 17.7 ± 21.5; p = 0.09); lymph node, liver and peritoneal metastases (RQ = 11,414.5 ± 12,672.9; 119.2 ± 138.9; 816.3 ± 2,736.1; p = 0.0001, respectively). qRT-PCR results were confirmed by ISH, demonstrating significant correlation between CCAT1 up-regulation measured using these two methods.ConclusionCCAT1 is up-regulated across the colon adenoma-carcinoma sequence. This up-regulation is evident in pre-malignant conditions and through all disease stages, including advanced metastatic disease suggesting a role in both tumorigenesis and the metastatic process.
Background: Long non-coding RNAs (lncRNAs) have been shown to have functional roles in cancer biology and are dys-regulated in many tumors. Colon Cancer Associated Transcript -1 (CCAT1) is a lncRNA, previously shown to be significantly up-regulated in colon cancer. The aim of this study is to determine expression levels of CCAT1 in gastric carcinoma (GC).Methods: Tissue samples were obtained from patients undergoing resection for gastric carcinoma (n=19). For each patient, tumor tissue and normal appearing gastric mucosa were taken. Normal gastric tissues obtained from morbidly obese patients, undergoing laparoscopic sleeve gastrectomy served as normal controls (n=19). A human gastric carcinoma cell line (AGS) served as positive control. RNA was extracted from all tissue samples and CCAT1 expression was analyzed using quantitative real time-PCR (qRT-PCR).Results: Low expression of CCAT1 was identified in normal gastric mucosa samples obtained from morbidly obese patients [mean Relative Quantity (RQ) = 1.95±0.4]. AGS human gastric carcinoma cell line showed an elevated level of CCAT1 expression (RQ=8.02). Expression levels of CCAT1 were approximately 10.8 fold higher in GC samples than in samples taken from the negative control group (RQ=21.1±5 vs. RQ=1.95±0.4, respectively, p<0.001). Interestingly, CCAT1 expression was significantly overexpressed in adjacent normal tissues when compared to the negative control group (RQ = 15.25±2 vs. RQ=1.95±0.4, respectively, p<0.001). Tissues obtained from recurrent GC cases showed the highest expression levels (RQ = 88.8±31; p<0.001). Expression levels increased with tumor stage (T4- 36.4±15, T3- 16.1±6, T2- 4.7±1), however this did not reach statistical significance (p=0.2). There was no difference in CCAT1 expression between intestinal and diffuse type GC (RQ=22.4±7 vs. 22.4±16, respectively, p=0.9). Within the normal gastric tissue samples, no significant difference in CCAT1 expression was observed in helicobacter pylori negative and positive patients (RQ= 2.4±0.9 vs. 0.93±0.2, respectively, p=0.13).Conclusion: CCAT1 is up-regulated in gastric cancer, and may serve as a potential bio-marker for early detection and surveillance.
Background/Aims: Arsenic trioxide (ATO) is a known anti-acute promyelocytic leukemia (APL) reagent, whose clinical applications are limited by its serious cardiac toxicity and fatal adverse effects, such as sudden cardiac death resulting from long QT syndrome (LQTS). The mechanisms of cardiac arrhythmia due to ATO exposure still need to be elucidated. Long non-coding RNAs (lncRNAs) are emerging as major regulators of various pathophysiological processes. This study aimed to explore the involvement of lncRNAs in ATO-induced LQTS in vivo and in vitro. Methods: For in vivo experiments, mice were administered ATO through the tail vein. For in vitro experiments, ATO was added to the culture medium of primary cultured neonatal mouse cardiomyocytes. To evaluate the effect of lncRNA Kcnq1ot1, siRNA and lentivirus-shRNA were synthesized to knockdown lncRNA Kcnq1ot1. Results: After ATO treatment, the Kcnq1ot1 and Kcnq1 expression levels were down regulated. lncRNA Kcnq1ot1 knockdown prolonged the action potential duration (APD) in vitro and exerted LQTS in vivo. Correspondingly, Kcnq1 expression was decreased after silencing lncRNA Kcnq1ot1. However, the knockdown of Kcnq1 exerted no effect on lncRNA Kcnq1ot1 expression. Conclusions: To our knowledge, this report is the first to demonstrate that lncRNA Kcnq1ot1 downregulation is responsible for QT interval prolongation induced by ATO at least partially by repressing Kcnq1 expression. lncRNA Kcnq1ot1 has important pathophysiological functions in the heart and could become a novel antiarrhythmic target.
Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls’ Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.