Deletions of the distal short arm of chromosome 1 (1p36) represent a common, newly delineated deletion syndrome, characterized by moderate to severe psychomotor retardation, seizures, growth delay, and dysmorphic features. Previous cytogenetic underascertainment of this chromosomal deletion has made it difficult to characterize the clinical and molecular aspects of the syndrome. Recent advances in cytogenetic technology, particularly FISH, have greatly improved the ability to identify 1p36 deletions and have allowed a clearer definition of the clinical phenotype and molecular characteristics of this syndrome. We have identified 14 patients with chromosome 1p36 deletions and have assessed the frequency of each phenotypic feature and clinical manifestation in the 13 patients with pure 1p36 deletions. The physical extent and parental origin of each deletion were determined by use of FISH probes on cytogenetic preparations and by analysis of polymorphic DNA markers in the patients and their available parents. Clinical examinations revealed that the most common features and medical problems in patients with this deletion syndrome include large anterior fontanelle (100%), motor delay/hypotonia (92%), moderate to severe mental retardation (92%), growth delay (85%), pointed chin (80%), eye/vision problems (75%), seizures (72%), flat nasal bridge (65%), clinodactyly and/or short fifth finger(s) (64%), low-set ear(s) (59%), ear asymmetry (57%), hearing deficits (56%), abusive behavior (56%), thickened ear helices (53%), and deep-set eyes (50%). FISH and DNA polymorphism analysis showed that there is no uniform region of deletion but, rather, a spectrum of different deletion sizes with a common minimal region of deletion overlap.
Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C, ASH1L, and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B-related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders.
Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.
BackgroundLarge-scale cohort-based whole exome sequencing of individuals with neurodevelopmental disorders (NDDs) has identified numerous novel candidate disease genes; however, detailed phenotypic information is often lacking in such studies. De novo mutations in pogo transposable element with zinc finger domain (POGZ) have been identified in six independent and diverse cohorts of individuals with NDDs ranging from autism spectrum disorder to developmental delay.MethodsWhole exome sequencing was performed on five unrelated individuals. Sanger sequencing was used to validate variants and segregate mutations with the phenotype in available family members.ResultsWe identified heterozygous truncating mutations in POGZ in five unrelated individuals, which were confirmed to be de novo or not present in available parental samples. Careful review of the phenotypes revealed shared features that included developmental delay, intellectual disability, hypotonia, behavioral abnormalities, and similar facial characteristics. Variable features included short stature, microcephaly, strabismus and hearing loss.ConclusionsWhile POGZ has been associated with neurodevelopmental disorders in large cohort studies, our data suggest that loss of function variants in POGZ lead to an identifiable syndrome of NDD with specific phenotypic traits. This study exemplifies the era of human reverse clinical genomics ushered in by large disease-directed cohort studies; first defining a new syndrome molecularly and, only subsequently, phenotypically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.