Context. Thanks to its excellent 5100 m high site in Chajnantor, the Atacama Pathfinder Experiment (APEX) systematically explores the southern sky at submillimeter wavelengths, in both continuum and spectral line emission. Studying continuum emission from interstellar dust is essential to locating the highest density regions in the interstellar medium, and deriving their masses, column densities, density structures, and large-scale morphologies. In particular, the early stages of (massive) star formation remain poorly understood, mainly because only small samples of high-mass proto-stellar or young stellar objects have been studied in detail so far. Aims. Our goal is to produce a large-scale, systematic database of massive pre-and proto-stellar clumps in the Galaxy, to understand how and under what conditions star formation takes place. Only a systematic survey of the Galactic Plane can provide the statistical basis for unbiased studies. A well characterized sample of Galactic star-forming sites will deliver an evolutionary sequence and a mass function of high-mass, star-forming clumps. This systematic survey at submillimeter wavelengths also represents a preparatory work for Herschel and ALMA. Methods. The APEX telescope is ideally located to observe the inner Milky Way. The Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 μm, with a beam size of 19. 2. Taking advantage of its large field of view (11. 4) and excellent sensitivity, we started an unbiased survey of the entire Galactic Plane accessible to APEX, with a typical noise level of 50−70 mJy/beam: the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). Results. As a first step, we covered ∼95 deg 2 of the Galactic Plane. These data reveal ∼6000 compact sources brighter than 0.25 Jy, or 63 sources per square degree, as well as extended structures, many of them filamentary. About two thirds of the compact sources have no bright infrared counterpart, and some of them are likely to correspond to the precursors of (high-mass) proto-stars or protoclusters. Other compact sources harbor hot cores, compact H ii regions, or young embedded clusters, thus tracing more evolved stages after massive stars have formed. Assuming a typical distance of 5 kpc, most sources are clumps smaller than 1 pc with masses from a few 10 to a few 100 M . In this first introductory paper, we show preliminary results from these ongoing observations, and discuss the mid-and long-term perspectives of the survey.
The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μm or 85−125 μm and 125−210 μm, over a field of view of ∼1.75 × 3.5 , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47 × 47 , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions. Key words. space vehicles: instruments -instrumentation: photometers -instrumentation: spectrographsHerschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
The New IRAM KID Array (NIKA) instrument is a dual-band imaging camera operating with kinetic inductance detectors (KID) cooled at 100 mK. NIKA is designed to observe the sky at wavelengths of 1.25 and 2.14 mm from the IRAM 30 m telescope at Pico Veleta with an estimated resolution of 13 arcsec and 18 arcsec, respectively. This work presents the performance of the NIKA camera prior to its opening to the astrophysical community as an IRAM common-user facility in early 2014. NIKA is a test bench for the final NIKA2 instrument to be installed at the end of 2015. The last NIKA observation campaigns on November 2012 and June 2013 have been used to evaluate this performance and to improve the control of systematic effects. We discuss here the dynamical tuning of the readout electronics to optimize the KID working point with respect to background changes and the new technique of atmospheric absorption correction. These modifications significantly improve the overall linearity, sensitivity, and absolute calibration performance of NIKA. This is proved on observations of point-like sources for which we obtain a best sensitivity (averaged over all valid detectors) of 40 and 14 mJy s 1/2 for optimal weather conditions for the 1.25 and 2.14 mm arrays, respectively. NIKA observations of well known extended sources (DR21 complex and the Horsehead nebula) are presented. This performance makes the NIKA camera a competitive astrophysical instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.