Summary
More than any other methodology, transmission electron microscopy (TEM) has contributed to our understanding of the architecture and organization of cells. With current detection limits approaching atomic resolution, it will ultimately become possible to ultrastructurally image intracellular macromolecular assemblies in situ. Presently, however, methods to unambiguously identify proteins within the crowded environment of the cell’s interior are lagging behind. We describe a novel approach, metal-tagging TEM (METTEM) that allows detection of intracellular proteins in mammalian cells with high specificity, exceptional sensitivity and at molecular scale resolution. In live cells treated with gold salts, proteins bearing a small metal-binding tag will form 1-nm gold nanoclusters, readily detectable in electron micrographs. The applicability and strength of METTEM is demonstrated by a study of Rubella virus replicase and capsid proteins, which revealed virus-induced cell structures not seen before.
Background and objectives: The pathogenesis of acquired nephrogenic systemic fibrosis recently described for patients with renal insufficiency and a history of exposition to gadolinium-based magnetic resonance contrast agents is not completely understood. A role for circulating fibroblasts in the fibrosing tissue is hypothetical, and the mechanism of the assumed trigger function of gadolinium remains elusive.Design, setting, participants, & measurements: A skin lesion on a 76-yr-old man with symptoms of nephrogenic systemic fibrosis lasting 5 mo was studied at the ultrastructural level. After confirmation of he diagnosis by histopathologic methods, the presence and distribution of gadolinium, iron, calcium, and magnesium by energy filtering transmission electron microscopy was also examined.Results: The performed electron spectroscopic imaging and electron energy loss spectroscopic analyses on deparaffinized samples revealed deposition of gadolinium in irregular small aggregates that adhered to cell profiles and collagen fibers of the connective tissue, forming a perivascular "gadolinium-deposit zone" in the skin. Traces of iron signal were demonstrated in singular gadolinium-positive deposits, and iron presence was found in adjacent connective tissue. The ultrastructural cell analysis of the lesion showed among numerous poorly differentiated fibrocytes also higher differentiated cells with myofibroblastic characteristics, including bundles of intermediate filaments and attachment plaques in the cell periphery, indicating an ability of lesional fibroblasts to differentiate into myofibroblastic cells.Conclusions: These findings support the pivotal role of gadolinium chelates in the development of nephrogenic systemic fibrosis.
Molar dentine was sliced into 100 nm ultrathin sections, by means of a focused ion beam, for observation by energy‐filtering transmission electron microscopy (EFTEM). Within the matrix, crystals approximately 10 nm wide and 50–100 nm long were clearly observed. When carbon and calcium were mapped in electron spectroscopic images by EFTEM, carbon failed to localize in crystals. However, it was found in other regions, especially those adjacent to crystals. Because carbon localizations were thought to reflect the presence of organic components, carbon concentration in regions near crystals suggested the interaction of crystals and organics, leading to organic control of apatite formation and growth. Ca was present in almost all regions. The majority of Ca localizing in regions other than crystals may be bound to organic substances present in dentine matrix. These substances are thought to both accumulate Ca and act as reservoirs for crystallization of apatite in dentine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.