The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13θ13 by observing νeνe appearance in a νμνμ beam. It also aims to make a precision measurement of the known oscillation parameters, View the MathML sourceΔm232 and sin22θ23sin22θ23, via νμνμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem
New Jefferson Lab data are presented on the nuclear dependence of the inclusive cross section from (2)H, (3)He, (4)He, (9)Be and (12)C for 0.3 < x < 0.9, Q(2) approximately 3-6 GeV(2). These data represent the first measurement of the EMC effect for (3)He at large x and a significant improvement for (4)He. The data do not support previous A-dependent or density-dependent fits to the EMC effect and suggest that the nuclear dependence of the quark distributions may depend on the local nuclear environment.
We present new measurements of electron scattering from high-momentum nucleons in nuclei. These data allow an improved determination of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data also include the kinematic region where three-nucleon correlations are expected to dominate.
The 1 H e; e 0 n cross section was measured at four-momentum transfers of Q 2 1:60 and 2:45 GeV 2 at an invariant mass of the photon nucleon system of W 2:22 GeV. The charged pion form factor (F ) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q 2 by one sigma, but is still far from its perturbative quantum chromodynamics prediction. DOI: 10.1103/PhysRevLett.97.192001 PACS numbers: 14.40.Aq, 11.55.Jy, 13.40.Gp, 25.30.Rw A fundamental challenge in nuclear physics is the description of hadrons in terms of the constituents of the underlying theory of strong interactions, quarks, and gluons. Properties such as the total charge and magnetic moments are well described in a constituent quark framework, which effectively takes into account quark-gluon interactions. However, charge and current distributions, which are more sensitive to the underlying dynamic processes, are not well described.Hadronic form factors provide important information about hadronic structure. The coupling of a virtual photon to structureless particles is completely determined by their charge and magnetic moments. However, for composite particles one must account for the internal structure, which is accomplished by momentum transfer dependent functions. Examples of these functions are the electromagnetic form factors, which describe the distribution of charge and current.One of the simplest hadronic systems available for study is the pion, whose valence structure is a bound state of a quark and an antiquark. The electromagnetic structure of a spinless particle such as the pion is parametrized by a single form factor. Asymptotically, the pion charge form factor, F , is given in perturbative quantum chromodynamics (pQCD) [1]:
Large experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena. These limitations have inspired searches for physics beyond the standard model in the post-Higgs era through the direct production of additional particles at high-energy accelerators, which have so far been unsuccessful. Examples include searches for supersymmetric particles, which connect bosons (integer-spin particles) with fermions (half-integer-spin particles), and for leptoquarks, which mix the fundamental quarks with leptons. Alternatively, indirect searches using precise measurements of well predicted standard-model observables allow highly targeted alternative tests for physics beyond the standard model because they can reach mass and energy scales beyond those directly accessible by today's high-energy accelerators. Such an indirect search aims to determine the weak charge of the proton, which defines the strength of the proton's interaction with other particles via the well known neutral electroweak force. Because parity symmetry (invariance under the spatial inversion (x, y, z) → (-x, -y, -z)) is violated only in the weak interaction, it provides a tool with which to isolate the weak interaction and thus to measure the proton's weak charge . Here we report the value 0.0719 ± 0.0045, where the uncertainty is one standard deviation, derived from our measured parity-violating asymmetry in the scattering of polarized electrons on protons, which is -226.5 ± 9.3 parts per billion (the uncertainty is one standard deviation). Our value for the proton's weak charge is in excellent agreement with the standard model and sets multi-teraelectronvolt-scale constraints on any semi-leptonic parity-violating physics not described within the standard model. Our results show that precision parity-violating measurements enable searches for physics beyond the standard model that can compete with direct searches at high-energy accelerators and, together with astronomical observations, can provide fertile approaches to probing higher mass scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.