Grass snakes (Natrix natrix) represent one of the most widely distributed snake species of the Palaearctic region, ranging from the North African Maghreb region and the Iberian Peninsula through most of Europe and western Asia eastward to the region of Lake Baikal in Central Asia. Within N. natrix, up to 14 distinct subspecies are regarded as valid. In addition, some authors recognize big‐headed grass snakes from western Transcaucasia as a distinct species, N. megalocephala. Based on phylogenetic analyses of a 1984‐bp‐long alignment of mtDNA sequences (ND4+tRNAs, cyt b) of 410 grass snakes, a nearly range‐wide phylogeography is presented for both species. Within N. natrix, 16 terminal mitochondrial clades were identified, most of which conflict with morphologically defined subspecies. These 16 clades correspond to three more inclusive clades from (i) the Iberian Peninsula plus North Africa, (ii) East Europe and Asia and (iii) West Europe including Corso‐Sardinia, the Apennine Peninsula and Sicily. Hypotheses regarding glacial refugia and postglacial range expansions are presented. Refugia were most likely located in each of the southern European peninsulas, Corso‐Sardinia, North Africa, Anatolia and the neighbouring Near and Middle East, where the greatest extant genetic diversity occurs. Multiple distinct microrefugia are inferred for continental Italy plus Sicily, the Balkan Peninsula, Anatolia and the Near and Middle East. Holocene range expansions led to the colonization of more northerly regions and the formation of secondary contact zones. Western Europe was invaded from a refuge within southern France, while Central Europe was reached by two distinct range expansions from the Balkan Peninsula. In Central Europe, there are two contact zones of three distinct mitochondrial clades, and one of these contact zones was theretofore completely unknown. Another contact zone is hypothesized for Eastern Europe, which was colonized, like north‐western Asia, from the Caucasus region. Further contact zones were identified for southern Italy, the Balkans and Transcaucasia. In agreement with previous studies using morphological characters and allozymes, there is no evidence for the distinctiveness of N. megalocephala. Therefore, N. megalocephala is synonymized with N. natrix.
African clawed frogs, genus Xenopus, are extraordinary among vertebrates in the diversity of their polyploid species and the high number of independent polyploidization events that occurred during their diversification. Here we update current understanding of the evolutionary history of this group and describe six new species from west and central sub-Saharan Africa, including four tetraploids and two dodecaploids. We provide information on molecular variation, morphology, karyotypes, vocalizations, and estimated geographic ranges, which support the distinctiveness of these new species. We resurrect Xenopus calcaratus from synonymy of Xenopus tropicalis and refer populations from Bioko Island and coastal Cameroon (near Mt. Cameroon) to this species. To facilitate comparisons to the new species, we also provide comments on the type specimens, morphology, and distributions of X. epitropicalis, X. tropicalis, and X. fraseri. This includes significantly restricted application of the names X. fraseri and X. epitropicalis, the first of which we argue is known definitively only from type specimens and possibly one other specimen. Inferring the evolutionary histories of these new species allows refinement of species groups within Xenopus and leads to our recognition of two subgenera (Xenopus and Silurana) and three species groups within the subgenus Xenopus (amieti, laevis, and muelleri species groups).
The African clawed frog Xenopus laevis has a large native distribution over much of sub-Saharan Africa and is a model organism for research, a proposed disease vector, and an invasive species. Despite its prominent role in research and abundance in nature, surprisingly little is known about the phylogeography and evolutionary history of this group. Here, we report an analysis of molecular variation of this clade based on 17 loci (one mitochondrial, 16 nuclear) in up to 159 individuals sampled throughout its native distribution. Phylogenetic relationships among mitochondrial DNA haplotypes were incongruent with those among alleles of the putatively female-specific sex-determining gene DM-W, in contrast to the expectation of strict matrilineal inheritance of both loci. Population structure and evolutionarily diverged lineages were evidenced by analyses of molecular variation in these data. These results further contextualize the chronology, and evolutionary relationships within this group, support the recognition of X. laevis sensu stricto, X. petersii, X. victorianus and herein revalidated X. poweri as separate species. We also propose that portions of the currently recognized distributions of X. laevis (north of the Congo Basin) and X. petersii (south of the Congo Basin) be reassigned to X. poweri.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.