Translation initiation is a complex process in which initiator tRNA, 40S, and 60S ribosomal subunits are assembled by eukaryotic initiation factors (eIFs) into an 80S ribosome at the initiation codon of mRNA. The cap-binding complex eIF4F and the factors eIF4A and eIF4B are required for binding of 43S complexes (comprising a 40S subunit, eIF2͞GTP͞Met-tRNAi and eIF3) to the 5 end of capped mRNA but are not sufficient to promote ribosomal scanning to the initiation codon. eIF1A enhances the ability of eIF1 to dissociate aberrantly assembled complexes from mRNA, and these factors synergistically mediate 48S complex assembly at the initiation codon. Joining of 48S complexes to 60S subunits to form 80S ribosomes requires eIF5B, which has an essential ribosome-dependent GTPase activity and hydrolysis of eIF2-bound GTP induced by eIF5. Initiation on a few mRNAs is cap-independent and occurs instead by internal ribosomal entry. Encephalomyocarditis virus (EMCV) and hepatitis C virus epitomize distinct mechanisms of internal ribosomal entry site (IRES)-mediated initiation. The eIF4A and eIF4G subunits of eIF4F bind immediately upstream of the EMCV initiation codon and promote binding of 43S complexes. EMCV initiation does not involve scanning and does not require eIF1, eIF1A, and the eIF4E subunit of eIF4F. Initiation on some EMCV-like IRESs requires additional noncanonical initiation factors, which alter IRES conformation and promote binding of eIF4A͞4G. Initiation on the hepatitis C virus IRES is even simpler: 43S complexes containing only eIF2 and eIF3 bind directly to the initiation codon as a result of specific interaction of the IRES and the 40S subunit.T ranslation of mRNA into protein begins after assembly of initiator tRNA (Met-tRNA i ), mRNA, and separated 40S and 60S ribosomal subunits into an 80S ribosome in which MettRNA i is positioned in the ribosomal P site at the initiation codon. The complex initiation process that leads to 80S ribosome formation consists of several linked stages that are mediated by eukaryotic initiation factors. These stages are:(i) Selection of initiator tRNA from the pool of elongator tRNAs by eukaryotic initiation factor (eIF)2 and binding of an eIF2͞GTP͞Met-tRNA i ternary complex and other eIFs to the 40S subunit to form a 43S preinitiation complex.(ii) Binding of the 43S complex to mRNA, which in most instances occurs by a mechanism that involves initial recognition of the m 7 G cap at the mRNA 5Ј-terminus by the eIF4E (cap-binding) subunit of eIF4F. Ribosomes bind to a subset of cellular and viral mRNAs as a result of cap-and endindependent internal ribosomal entry.(iii) Movement of the mRNA-bound ribosomal complex along the 5Ј nontranslated region (5ЈNTR) from its initial binding site to the initiation codon to form a 48S initiation complex in which the initiation codon is base paired to the anticodon of initiator tRNA.(iv) Displacement of factors from the 48S complex and joining of the 60S subunit to form an 80S ribosome, leaving Met-tRNA i in the ribosomal P site.Research in ...
Translation initiation on poliovirus RNA occurs by internal binding of ribosomes to a sequence within the 5' untranslated region. We have previously characterized a HeLa cell protein, p52, that binds to a fragment of the poliovirus 5' untranslated region (K. Meerovitch, J. Pelletier, and N. Sonenberg, Genes Dev. 3:1026-1034, 1989). Here we report the purification of the HeLa p52. Protein microsequencing identified p52 as La autoantigen. The La protein is a human antigen that is recognized by antibodies from patients with autoimmune disorders such as systemic lupus erythematosus and Sjogren's syndrome. We show that the La protein stimulates translation of poliovirus RNA, but not brome mosaic virus, tobacco mosaic virus, and alfalfa mosaic virus 4 RNA, translation in a reticulocyte lysate. In addition, La corrects aberrant translation of poliovirus RNA in a reticulocyte lysate. Subcellular immunolocalization showed that La protein is mainly nuclear, but after poliovirus infection, La is redistributed to the cytoplasm. Our results suggest that La protein is involved in poliovirus internal initiation of translation and might function through a similar mechanism in the translation of cellular mRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.