CD4CD25 regulatory T (Treg) cells and Th17 cells play important roles in peripheral immunity. Immune responses are main elements in the pathogenesis of ischemic stroke (IS). The contribution of Th17 cells in IS patients has not been proved, and whether the balance of Treg/Th17 cells is changed in IS patients remains unidentified. In the present study, we studied Th17 and Treg cell frequency, cytokine secretion, expression of transcription factors, and microRNAs related to Th17 and Treg cells differentiation, which is compared between IS patients and control group. Thirty patients with IS and 30 individuals as control group were enrolled in this study. The frequency of Th17 and Treg lymphocytes, the expression of transcription factors and microRNAs related to these cells, and the serum levels of associated cytokines were assessed by flow cytometry, real-time PCR, and ELISA, respectively. A significant reduction in proportion of peripheral Treg cell frequency and the levels of TGF-β and FOXP3 expression were observed in patients with IS compared with controls, while the proportions of Th17 were increased dramatically, and these effects were along with increases in the levels of IL-17A and RORγt expression in IS patients. The levels of mir-326 and mir-106b-25 expression were increased in patients with IS. These studies suggest that the increase in proportion of Th17 cells and decrease in Treg cells might contribute to the pathogenesis of IS. Manipulating the balance between Tregs and Th17 cells might be helpful for the treatment of IS.
In the current study, we aimed to identify nanocurcumin effects on microRNAs (miRNAs) in the peripheral blood of patients with relapsing-remitting multiple sclerosis (RRMS). We intended to investigate the expression pattern of these miRNAs in experimental settings in vivo. The expression levels of the selected 27 miRNAs known to be involved in the regulation of immune responses were analyzed in 50 RRMS patients and 35 healthy controls. The miRNA expression profiles were investigated by quantitative PCR (qPCR) at baseline and after 6 months of nanocurcumin therapy. Our data revealed that the expression of a number of microRNAs including miR-16, miR-17-92, miR-27, miR-29b, miR-126, miR-128, miR-132, miR-155, miR-326, miR-550, miR-15a, miR-19b, miR-106b, miR-320a, miR-363, miR-31, miR-150, and miR-340 is regulated by nanocurcumin. The results of the current work indicate that nanocurcumin is able to restore the expression pattern of dysregulated miRNAs in MS patients. We discovered that some miRNAs are deregulated in untreated patients compared with healthy controls and nanocurcumin-treated patients. This is a new finding that might represent the potential contribution of these miRNAs to MS pathogenesis. Taken together, these data provide novel insights into miRNA-dependent regulation of the function of B and T cells in MS disease and enrich our understanding of the effects mediated by a therapeutic approach that targets B and T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.