Abstract1 2 6 0 VOLUME 22 | NUMBER 11 | NOVEMBER 2016 nature medicine a r t i c l e s bnAbs have become blueprints for vaccine design owing to their unequalled activity against divergent HIV-1 strains and proven potency in preventing and suppressing HIV-1 infection after in vivo administration [1][2][3][4][5][6][7][8] . Elicitation of potent bnAb activity is relatively rare in natural HIV-1 infection: only 10-25% of infected individuals develop breadth, and an estimated 1% generate highly potent bnAb, or 'elite neutralization' , activity 9,10 . Although much is known about the functional properties of bnAbs, the parameters that govern their evolution in natural infection remain unknown, which is a critical limitation for vaccine development. To date, no vaccine approach has induced bnAb responses that match those elicited in natural infection 1,11 . Defining what restricts and promotes bnAb evolution in certain individuals will be crucial for devising successful vaccine regimens, as the same restrictions are likely to be encountered during immunization.Observations that bnAb activity arises predominantly in viremic individuals after several years of infection and is linked to lower CD4 + cell counts (referred to here as CD4 levels) 4,12-14 strongly suggest that prolonged exposure to viral antigen is needed for induction of bnAbs.Broadly neutralizing antibodies (bnAbs) are a focal component of HIV-1 vaccine design, yet basic aspects of their induction remain poorly understood. Here we report on viral, host and disease factors that steer bnAb evolution using the results of a systematic survey in 4,484 HIV-1-infected individuals that identified 239 bnAb inducers. We show that three parameters that reflect the exposure to antigen-viral load, length of untreated infection and viral diversity-independently drive bnAb evolution. Notably, black participants showed significantly (P = 0.0086-0.038) higher rates of bnAb induction than white participants. Neutralization fingerprint analysis, which was used to delineate plasma specificity, identified strong virus subtype dependencies, with higher frequencies of CD4-binding-site bnAbs in infection with subtype B viruses (P = 0.02) and higher frequencies of V2-glycan-specific bnAbs in infection with non-subtype B viruses (P = 1 × 10 −5 ). Thus, key host, disease and viral determinants, including subtypespecific envelope features that determine bnAb specificity, remain to be unraveled and harnessed for bnAb-based vaccine design.This may be necessary in part to allow the extensive antibody-affinity maturation that is characteristic of many HIV-1-specific bnAbs 15,16 . Similarly, antigen levels may be relevant, as bnAbs have been found to evolve less frequently in individuals with lower viral loads 1,4,13,17 . Individual case studies delineating pathways of bnAb maturation have highlighted the tight interplay between virus escape and antibody adaptation that precedes the development of a broad neutralization response [18][19][20][21][22][23] . In line with this, the viral envelop...
207 words ; main text : 2373 words. Abstract 27 Reverse genetics has been an indispensable tool revolutionising our insights into viral 28 pathogenesis and vaccine development. Large RNA virus genomes, such as from 29Coronaviruses, are cumbersome to clone and to manipulate in E. coli hosts due to size and 30 occasional instability 1-3 . Therefore, an alternative rapid and robust reverse genetics platform 31 for RNA viruses would benefit the research community. Here we show the full functionality 32 of a yeast-based synthetic genomics platform for the genetic reconstruction of diverse RNA 33 viruses, including members of the Coronaviridae, Flaviviridae and Paramyxoviridae families. 34 Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical 35 samples, or synthetic DNA, and reassembled in one step in Saccharomyces cerevisiae using 36 transformation associated recombination (TAR) cloning to maintain the genome as a yeast 37 artificial chromosome (YAC). T7-RNA polymerase has been used to generate infectious 38 RNA, which was then used to rescue viable virus. Based on this platform we have been able 39 to engineer and resurrect chemically-synthetized clones of the recent epidemic SARS-CoV-2 4 40 in only a week after receipt of the synthetic DNA fragments. The technical advance we 41 describe here allows to rapidly responding to emerging viruses as it enables the generation 42 and functional characterization of evolving RNA virus variants -in real-time -during an 43 outbreak.
Mycoplasmas are the smallest free-living organisms and cause a number of economically important diseases affecting humans, animals, insects, and plants. Here, we demonstrate that highly virulent Mycoplasma mycoides subspecies capri ( Mmc ) can be fully attenuated via targeted deletion of non-essential genes encoding, among others, potential virulence traits. Five genomic regions, representing approximately 10% of the original Mmc genome, were successively deleted using Saccharomyces cerevisiae as an engineering platform. Specifically, a total of 68 genes out of the 432 genes verified to be individually non-essential in the JCVI-Syn3.0 minimal cell, were excised from the genome. In vitro characterization showed that this mutant was similar to its parental strain in terms of its doubling time, even though 10% of the genome content were removed. A novel in vivo challenge model in goats revealed that the wild-type parental strain caused marked necrotizing inflammation at the site of inoculation, septicemia and all animals reached endpoint criteria within 6 days after experimental infection. This is in contrast to the mutant strain, which caused no clinical signs nor pathomorphological lesions. These results highlight, for the first time, the rational design, construction and complete attenuation of a Mycoplasma strain via synthetic genomics tools. Trait addition using the yeast-based genome engineering platform and subsequent in vitro or in vivo trials employing the Mycoplasma chassis will allow us to dissect the role of individual candidate Mycoplasma virulence factors and lead the way for the development of an attenuated designer vaccine.
Mycoplasmas are minute bacteria controlled by very small genomes ranging from 0.6 to 1.4 Mbp. They encompass several important medical and veterinary pathogens that are often associated with a wide range of chronic diseases. The long persistence of mycoplasma cells in their hosts can exacerbate the spread of antimicrobial resistance observed for many species. However, the nature of the virulence factors driving this phenomenon in mycoplasmas is still unclear. Toxin-antitoxin systems (TA systems) are genetic elements widespread in many bacteria that were historically associated with bacterial persistence. Their presence on mycoplasma genomes has never been carefully assessed, especially for pathogenic species. Here we investigated three candidate TA systems in M. mycoides subsp. capri encoding a (i) novel AAA-ATPase/subtilisin-like serine protease module, (ii) a putative AbiEii/AbiEi pair and (iii) a putative Fic/RelB pair. We sequence analyzed fourteen genomes of M. mycoides subsp. capri and confirmed the presence of at least one TA module in each of them. Interestingly, horizontal gene transfer signatures were also found in several genomic loci containing TA systems for several mycoplasma species. Transcriptomic and proteomic data confirmed differential expression profiles of these TA systems during mycoplasma growth in vitro. While the use of heterologous expression systems based on E. coli and B. subtilis showed clear limitations, the functionality and neutralization capacities of all three candidate TA systems were successfully confirmed using M. capricolum subsp. capricolum as a host. Additionally, M. capricolum subsp. capricolum was used to confirm the presence of functional TA system homologs in mycoplasmas of the Hominis and Pneumoniae phylogenetic groups. Finally, we showed that several of these M. mycoides subsp. capri toxins tested in this study, and particularly the subtilisin-like serine protease, could be used to establish a kill switch in mycoplasmas for industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.